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The Supplementary Material includes the finite-sample theory(Appendix S1), the proof of The-

orem 1 and Proposition 1 (Appendix S2), some necessary lemmas (Appendix S3), and additional

experiments for supporting data analysis (Appendix S4).

S1 Finite-sample Theory

Here we follow the framework of Du et al. (2021) to implement the finite-

sample theory on FDR control. To derive the finite-sample upper bound of

FDR, we do a small modification on the thresholding rule (cf. Eq. 1.3),

L̂ = L̂(W1, . . . ,Wp) = inf
L>0

{
1 + #{j : Wj ≤ −L}
#{j : Wj ≥ L} ∨ 1

≤ α

}
. (S1.1)

We define WŜ = (Wj,SLIP : j ∈ Ŝ)⊤, WŜ,−j = WŜ \Wj,SLIP, and

∆j = |Pr(Wj,SLIP > 0 | |Wj,SLIP|,WŜ,−j)− 1/2|. (S1.2)

The quantity ∆j measures the violation of the symmetry property of the jth

coordinate under general dependence. As shown in Theorem S1 below, the
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control of FDR boils down to the extent to which the symmetry properties

{∆j : j ∈ Ac ∩ Ŝ} are violated.

Theorem S1. For any α ∈ (0, 1), the FDR of the SLIP procedure with the

modified thresholding rule (S1.1) satisfies

FDR ≤ min
0≤ϵ<1/2

{
α

(
1 + 2ϵ

1− 2ϵ

)
+ Pr

(
max
Ac∩Ŝ

∆j ≥ ϵ

)}
.

The upper bound of FDR is hard to analyze, because {Wj,SLIP}’s are

dependent, and β̂j is not guaranteed symmetric about 0 in a finite sample.

We consider the ideal setting: (a) Wj,SLIP’s are independent of each other for

j ∈ Ŝ, (b) A ⊆ Ŝ, and (c) the distribution of random errors is symmetric.

We can show ∆j = 0 for all j ∈ Ŝ \ A ((a) ensures the independence while

(b) and (c) together ensure the symmetry of β̂j), which induces the precise

FDR control at the nominal level α. For the general setting, it is hard to

derive the expression of ∆j because of the involved change structure, which

we leave for future research.

Proof of Theorem S1. In this proof, we only consider those indices in Ŝ,

due to

#{j ∈ Ac : Wj ≥ L}
1 ∨#{j : Wj ≥ L}

=
#{j ∈ Ac ∩ Ŝ : Wj ≥ L}
1 ∨#{j ∈ Ŝ : Wj ≥ L}

,

induced by the fact Wj = 0 for j ̸∈ Ŝ. So we omit the notation Ŝ and

slightly abuse the notation W := WŜ = (W1, . . . ,Wq) and W−j := WŜ,−j,
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where q = |Ŝ|.

Let Wj = (W1, . . . ,Wj−1, |Wj|,Wj+1, . . . ,Wq) and Lj = T (Wj). We

define the term R(ϵ) =
∑

j∈Ac 1(Wj≥L,∆j≤ϵ)

1+
∑

j∈Ac 1(Wj≤−L)
. Then∑

j∈Ac 1(Wj ≥ L,∆j ≤ ϵ)

1 ∨
∑

j 1(Wj ≥ L)
=

∑
j∈Ac 1(Wj ≥ L,∆j ≤ ϵ)

1 +
∑

j∈Ac 1(Wj ≤ −L)
·
1 +

∑
j∈Ac 1(Wj ≤ −L)

1 ∨
∑

j 1(Wj ≥ L)

≤ αR(ϵ).

Next we derive the upper bound of E{R(ϵ)}. We have

E{R(ϵ)} =
∑
j∈Ac

E

{
1(Wj ≥ L,∆j ≤ ϵ)

1 +
∑

j∈Ac 1(Wj ≤ −L)

}
(a)
=
∑
j∈Ac

E

{
1(Wj ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈Ac,k ̸=j 1(Wk ≤ −Lj)

}

=
∑
j∈Ac

E

[
E

{
1(Wj ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈Ac,k ̸=j 1(Wk ≤ −Lj)
| |Wj|,W−j

}]

=
∑
j∈Ac

E

[
Pr(Wj ≥ 0 | |Wj|,W−j)1(|Wj| ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈Ac,k ̸=j 1(Wk ≤ −Lj)

]
(b)

≤
(
ϵ+

1

2

)
E

[∑
j∈Ac

1(|Wj| ≥ Lj,∆j ≤ ϵ)

1 +
∑

k∈Ac,k ̸=j 1(Wk ≤ −Lj)

]

≤
(
ϵ+

1

2

)(
E{R(ϵ)}+ E

[∑
j∈Ac

1(Wj ≤ −Lj)

1 +
∑

k∈Ac,k ̸=j 1(Wk ≤ −Lj)

])
(c)
=

(
ϵ+

1

2

)(
E{R(ϵ)}+ E

[∑
j∈Ac

1(Wj ≤ −Lj)

1 +
∑

k∈Ac,k ̸=j 1(Wk ≤ −Lk)

])

≤
(
ϵ+

1

2

)
[E{R(ϵ)}+ 1] ,

where the step (a) holds due to the positive threshold value L and the

definition of Lj, the step (b) holds by the definition of ∆j, and the step (c)
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holds due to the fact that if Wj ≤ −min(Lj, Lk) and Wk ≤ −min(Lj, Lk),

then Lj = Lk. Then

E{R(ϵ)} ≤ 1 + 2ϵ

1− 2ϵ
,

which proves the theorem.

S2 Proof of Theorem 1 and Proposition 1

Before preceding, we give some notations for the subsequent proofs. We

use an ≲ bn to denote that an ≤ Cbn for a universal constant C > 0, and

write an ≍ bn if an ≲ bn and bn ≲ an. For notational convenience, let

Wj = Wj,SLIP for j = 1, . . . , p and further rewrite Wj = U
(1)
j U

(2)
j , where

U
(1)
j = ξ

(1)
j /σ̂

1/2
jj and U

(2)
j = β̂j/V̂

1/2
jj . Let G(s) = S−1

0

∑
j∈Ŝ\A Pr(Wj ≥

s | Z1) and G−(s) = S−1
0

∑
j∈Ŝ\A Pr(Wj ≤ −s | Z1). Recall that H =

(X̂⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂ and Vjk = (ej)

⊤
ŜVar(β̂Ŝ | Z1)(ek)Ŝ . Denote V = Var(β̂Ŝ |

Z1) = (X̂⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂ΞX̂⊤X̂Ŝ(X̂

⊤
ŜX̂Ŝ)

−1 and V̂ = (X̂⊤
ŜX̂Ŝ)

−1. Let Di

is the diagonal matrix with (Di)jj =
√
τ̂
(2)
j /(T2 − τ̂

(2)
j ) if i > τ̂

(2)
j and

−
√

(T2 − τ̂
(2)
j )/τ̂

(2)
j otherwise. Then ξ(2) = 1√

T2

∑T2

i=1 DiZ
(2)
i . We introduce

τ
∗(k)
j = max{i : E(Z(k)

i+1,j) ̸= E(Z(k)
i,j )} for j ∈ A. Let

β∗
j =


√

τ
∗(2)
j (T2−τ

∗(2)
j )

T2
δ∗j , j ∈ A;

0, j /∈ A,

and ξ∗j =


√

τ
∗(1)
j (T1−τ

∗(1)
j )

T1
δ∗j , j ∈ A;

0, j ∈ A.
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Lemma S2.1. Suppose Assumptions 1–6 hold. Then for j ∈ A∗, (δ∗j )2|τ̂
(2)
j −

τ
∗(2)
j | ≤ ∆j, where ∆j’s satisfy that

max
j∈A∗

∆j

|δ∗j |
√

T log s̄p
= O(1).

Proof. W.l.o.g., we assume that T is divisible by r, where r is the sample-

splitting parameter. Recall that τ̂j
(2) = ⌊T2τ̂

(1)
j /T1⌋ = ⌊τ̂ (1)j /(r − 1)⌋, then

|τ̂ (2)j − τ̂
(1)
j /(r − 1)| ≤ 1. Similarly, by the definitions of τ ∗(1)j and τ

∗(2)
j , we

have |τ ∗(2)j −τ
∗(1)
j /(r−1)| ≤ 1. Thus, |τ̂ (2)j −τ

∗(2)
j | ≤ 2+ |τ̂ (1)j −τ

∗(1)
j |/(r−1).

Let ∆j = c∆|δ∗j |
√
T log(Tp1∗) for some constant c∆, and it suffices to show

(δ∗j )
2|τ̂ (1)j − τ

∗(1)
j | ≤ ∆j. Here for the sake of clarity, we slightly abuse

notations. We write τ̂
(1)
j , τ

∗(1)
j , T1 as τ̂j, τ

∗
j , T . Then we verify

Pr

[ ⋃
j∈A∗

{
(δ∗j )

2|τ̂j − τ ∗j | > ∆j

}]
→ 0.

With Bonferroni inequality, we have

Pr

[ ⋃
j∈A∗

{
(δ∗j )

2|τ̂j − τ ∗j | > ∆j

}]

≤ p1∗ max
j∈A∗

Pr
{
|τ̂j − τ ∗j | > ∆j/(δ

∗
j )

2
}

≤ p1∗ max
j∈A∗

T∑
τ=1

|τ−τ∗j |>∆j/(δ
∗
j )

2

Pr
{
|Nj(τ)−Nj(τ

∗
j )| ≥ |Mj(τ

∗
j )−Mj(τ)|

}

≤ p1∗ max
j∈A∗

T∑
τ=1

|τ−τ∗j |>∆j/(δ
∗
j )

2

Pr
{
Nj(τ)−Nj(τ

∗
j ) ≥ Mj(τ

∗
j )−Mj(τ)

}
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where

Mj(τ) =


√

τ
T−τ

T−τ∗j
T

√
Tδ∗j , τ < τ ∗j ,√

T−τ
τ

τ∗j
T

√
Tδ∗j , τ ≥ τ ∗j ,

Nj(τ) =

√
τ(T − τ)

T

(
1

T − τ

T∑
i=τ+1

εij −
1

τ

τ∑
i=1

εij

)
,

and the last inequality holds for sufficiently large T . Hereafter, we focus

on the probability Pr
{
Nj(τ)−Nj(τ

∗
j ) ≥ Mj(τ

∗
j )−Mj(τ)

}
. W.l.o.g., we

assume δ∗j > 0. For τ > τ ∗j +∆j/(δ
∗
j )

2, by calculation, we have

Mj(τ
∗
j )−Mj(τ) =

τ ∗j
T

√
Tδ∗j

(√
T − τ ∗j
τ ∗j

−
√

T − τ

τ

)

Nj(τ)−Nj(τ
∗
j ) =

1√
T


(√

T − τ ∗j
τ ∗j

−
√

T − τ

τ

) τ∗j∑
i=1

εij −

(√
τ ∗j

T − τ ∗j
+

√
T − τ

τ

)
τ∑

i=τ∗j +1

εij

+

(√
τ

T − τ
−

√
τ ∗j

T − τ ∗j

)
T∑

i=τ+1

εij

}

Let F = {maxi∈Z1 ∥ε
(1)
i ∥∞ ≤ AT}, where AT = T 1/θ+ζmp1 for small ζ > 0.

It is easy to see P (F) → 1. With Lemma S3.2, for some uniform constant

C for j ∈ A∗ related to cτ in Assumption 1 and cσ in Assumption 5, we
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have

Pr
{
Nj(τ)−Nj(τ

∗
j ) ≥ Mj(τ

∗
j )−Mj(τ) | F

}
≤ Pr

[
√
T{Nj(τ)−Nj(τ

∗
j )} ≥

τ ∗j
T
Tδ∗j

(√
T − τ ∗j
τ ∗j

−
√

T − τ

τ

)
| F

]

≤ Pr

[√
T{Nj(τ)−Nj(τ

∗
j )} ≥

√
CσjjTδ

∗
j

∆j

T (δ∗j )
2
| F
]

≤ exp

{
− C ′ log(Tp1∗)

4 + 2/3σ
−1/2
jj · AT

√
C ′ log(Tp1∗)/T

}
,

where C ′ = Cc2∆ > 4 fulfilled by some sufficiently large c∆. By Assumption

4, we have AT

√
log(Tp1∗)/T → 0 as T, p → ∞. Similar arguments give

also for τ < τ ∗j −∆j/(δ
∗
j )

2 and δ∗j < 0. Thus,

Pr

[ ⋃
j∈A∗

{
(δ∗j )

2|τ̂j − τ ∗j | > ∆j

}]
= o(1).

The conclusion above shows the term ∆j = c∆|δ∗j |
√

T log(Tp1∗) for j ∈ A∗

are valid, which means (δ∗j )2|τ̂j−τ ∗j | can be asymptotically bounded by such

∆j’s uniformly for j ∈ A∗. It is easy to see

max
j∈A∗

∆j

|δ∗j |
√

T log s̄p
= O(1),

by Assumption 3. Then the lemma follows.

Lemma S2.2. Suppose Assumptions 1–6 hold. Then as T → ∞,

Pr
{
|β̂j − β∗

j |/(V̂jj)
1/2 > C

√
log s̄p | Z1

}
= o(1/s̄p)
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holds uniformly for j ∈ Ŝ, where C is some positive constant.

Proof. Recall that βj = E(ξ(2)j | Z1) for j ∈ A and βj = 0 otherwise. It can

be verified that

βj =



1√
T2
(T2 − τ

∗(2)
j )

√
τ̂
(2)
j

T2−τ̂
(2)
j

δ∗j , j ∈ A, τ̂
(2)
j ≤ τ

∗(2)
j ,

1√
T2
τ
∗(2)
j

√
T2−τ̂

(2)
j

τ̂
(2)
j

δ∗j , j ∈ A, τ̂
(2)
j > τ

∗(2)
j ,

0, j /∈ A.

Note that β̂j−β∗
j =

(
β̂j − βj

)
+(βj − βA∗,j)+

(
βA∗,j − β∗

j

)
, where βA∗,j = βj

for j ∈ A∗ and 0 otherwise. It can be further verified that suppose j ∈

A∗, τ̂
(2)
j ≤ τ

∗(2)
j , by Assumption 1, it can be concluded that |βA∗,j − β∗

j | ≲

T
−1/2
2 ∆j/|δ∗j |, where ∆j is defined in Lemma S2.1. Similarly, bound can

be derived for j ∈ A∗, τ̂
(2)
j > τ

∗(2)
j . And with Assumption 1, we have

|βj − βA∗,j| ≍
√
T |δ∗j | for j ∈ A\A∗ and 0 otherwise.

For j ∈ Ŝ, we have

β̂j − βj = e⊤j(X̂
⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂
{
ξ(2) − E(ξ(2) | Z1)

}
+ e⊤j(X̂

⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂ŜcβŜc

Consider the decomposition

(X̂⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂ŜcβŜc = (X⊤

ŜXŜ)
−1X⊤

ŜXŜcβŜc + (X̂⊤
ŜX̂Ŝ)

−1
(
X̂⊤

ŜX̂Ŝc −X⊤
ŜXŜc

)
βŜc

+
{
(X̂⊤

ŜX̂Ŝ)
−1 − (X⊤

ŜXŜ)
−1
}
X⊤

ŜXŜcβŜc .

By Lemma S3.6, S3.7, and the results from the proof of Lemma S3.1, we
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have

∥X̂⊤
ŜX̂Ŝc −X⊤

ŜXŜc∥2 = ∥(Ξ̂
−1

−Ξ−1)Ŝ,Ŝc∥2 ≤ ∥Ξ̂
−1

−Ξ−1∥2 = op

{
1

up(p1 − p1∗)

}
,

∥(X̂⊤
ŜX̂Ŝ)

−1 − (X⊤
ŜXŜ)

−1∥2 = Op(1)∥X̂⊤
ŜX̂Ŝ −X⊤

ŜXŜ∥2 = op

{
1

up(p1 − p1∗)

}
,

and∥∥∥(X̂⊤
ŜX̂Ŝ)

−1(X̂⊤
ŜX̂Ŝc −X⊤

ŜXŜc)
∥∥∥
2
≤
∥∥∥X̂⊤

ŜX̂Ŝ

∥∥∥
2

∥∥∥X̂⊤
ŜX̂Ŝc −X⊤

ŜXŜc

∥∥∥
2
= op

{
1

up(p1 − p1∗)

}
,

then

max
i,j

{
(X̂⊤

ŜX̂Ŝ)
−1(X̂⊤

ŜX̂Ŝc −X⊤
ŜXŜc)

}
ij
= op

{
1

up(p1 − p1∗)

}
max
i,j

{
(X̂⊤

ŜX̂Ŝ)
−1 − (X⊤

ŜXŜ)
−1
}

ij
= op

{
1

up(p1 − p1∗)

}
.

By the Assumption 6, we have

max
i,j

[{
(X̂⊤

ŜX̂Ŝ)
−1 − (X⊤

ŜXŜ)
−1
}
X⊤

ŜXŜc

]
ij
= op

(
1

p1 − p1∗

)
,

and ∥∥∥(X̂⊤
ŜX̂Ŝ)

−1
(
X̂⊤

ŜX̂Ŝc −X⊤
ŜXŜc

)
βŜc

∥∥∥
∞

= op(
√
log s̄p/up),∥∥∥{(X̂⊤

ŜX̂Ŝ)
−1 − (X⊤

ŜXŜ)
−1
}
X⊤

ŜXŜcβŜc

∥∥∥
∞

= op(
√
log s̄p).

Thus, with Assumption 6,

∥(X̂⊤
ŜX̂Ŝ)

−1X̂⊤
ŜX̂ŜcβŜc∥∞ = Op

(√
log s̄p

)
.

So for j ∈ Ŝ, there exists a constant cβ,

|β̂j − βj| ≤

∣∣∣∣∣ 1√
T2

T2∑
i=1

e⊤jHDiε
(2)
i

∣∣∣∣∣+ cβ
√

log s̄p. (S2.1)



Mengtao Wen AND Guanghui Wang AND Changliang Zou AND Zhaojun Wang

Let F = {maxi=1,...,T2 ∥HDiε
(2)
i ∥∞ ≤ AT}, where AT = T

1/θ+ϵ1
2 mp2

for some small ϵ1 > 0. It is easy to see Pr(F | Z1) → 1. Note that

maxj=1,...,p Vjj/V̂jj = 1 + o(1). By the fact that

|βA∗,j − β∗
j | = O(

√
log s̄p), uniformly for j ∈ A∗,

|βj − βA∗,j| = O(
√
log s̄p), uniformly for j ∈ A\A∗,

with Lemma S2.1 and Assumption 2, we have

Pr
{
|β̂j − β∗

j |/(V̂jj)
1/2 > C

√
log s̄p for some j ∈ Ŝ | Z1,F

}
≤ s̄p max

j∈Ŝ
Pr

(
|β̂j − βj|+ |βj − βA∗,j|+ |βA∗,j − β∗

j | > C

√
V̂jj log s̄p | Z1,F

)
≤ 2s̄p max

j∈Ŝ
Pr

(
1√
T2

T2∑
i=1

e⊤jHDiε
(2)
i >

√
C ′Vjj log s̄p | Z1,F

)
,

where C ′ > 4 is some constant fulfilled by some sufficiently large C. By

Lemma S3.2,

Pr

(
1√
T2

T2∑
i=1

e⊤jHDiε
(2)
i >

√
C ′Vjj log s̄p | Z1,F

)

≤ exp

(
− C ′ log s̄p

2 + 2/3
√

C ′/Vjj · AT

√
log s̄p/T2

)

= o(1/s̄2p).

The conclusion follows.

Lemma S2.3. Suppose Assumptions 1–6 hold, we have

G(s)

G−(s)
− 1 → 0

uniformly for 0 ≤ s ≤ s∗, where s∗ satisfies G−(s
∗) = αp1∗/(2S0).
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Proof. Let MT = C
√

log s̄p, where C is specified in Lemma S2.2. Then

G(s)

G−(s)
− 1 =

∑
j∈Ŝ\A {Pr(Wj ≥ s | Z1)− Pr(Wj ≤ −s | Z1)}

S0G−(s)

=

∑
j∈Ŝ\A

{
Pr(Wj ≥ s, |U (2)

j | ≤ MT | Z1)− Pr(Wj ≤ −s, |U (2)
j | ≤ MT | Z1)

}
S0G−(s)

+

∑
j∈Ŝ\A

{
Pr(Wj ≥ s, |U (2)

j | > MT | Z1)− Pr(Wj ≤ −s, |U (2)
j | > MT | Z1)

}
S0G−(s)

:= I + II.

By Lemma S2.2 and the fact that S0G−(s) ≥ αp1∗/2, we have II = o(1).

For j ∈ Ŝ\A, U (2)
j = 1√

T2

∑T2

i=1 e
⊤
jHDiε

(2)
i /

√
V̂jj (cf. Eq. (S2.1)). By

Assumption 4, it can be shown that for some constant 0 < C ′ < 1 (in

Lemma S3.3), MT ≤ C ′ {2 log(1/LT )}1/2, where LT ≲ T
1−θ/2
2 mθ

p2. Hence,

Lemma S3.3 entails that

Pr(Wj ≥ s, |U (2)
j | ≤ MT | Z1)

Pr(U
(1)
j Z ≥ s, |Z| ≤ MT | Z1)

→ 1, (S2.2)

where Z ∼ N(0, 1) is independent of U (1)
j . Similarly,

Pr(Wj ≤ −s, |U (2)
j | ≤ MT | Z1)

Pr(U
(1)
j Z ≤ −s, |Z| ≤ MT | Z1)

→ 1.

By noting that Pr(U
(1)
j Z ≤ −s, |Z| ≤ MT | Z1) = Pr(U

(1)
j Z ≥ s, |Z| ≤

MT | Z1), we conclude that I = o(1). The conclusion follows.

Lemma S2.4. Suppose Assumptions 1–6 hold. Then conditional on Z1,
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we have

sup
0≤s≤s∗

∣∣∣∣∣S
−1
0

∑
j∈Ŝ\A I(Wj ≥ s)

G(s)
− 1

∣∣∣∣∣ = op(1),

sup
0≤s≤s∗

∣∣∣∣∣S
−1
0

∑
j∈Ŝ\A I(Wj ≤ −s)

G−(s)
− 1

∣∣∣∣∣ = op(1),

where s∗ is specified as in Lemma S2.3.

Proof. We only prove the first one, and the second one follows similarly.

From the proof of Lemma S2.3, we have

G(s) = S−1
0

∑
j∈Ŝ\A

Pr(Wj ≥ s, |U (2)
j | ≤ MT | Z1) {1 + o(1)} := G̃(s) {1 + o(1)} .

Similarly, conditional Z1, we have

S−1
0

∑
j∈Ŝ\A

I(Wj ≥ s) = S−1
0

∑
j∈Ŝ\A

I(Wj ≥ s, |U (2)
j | ≤ MT ) {1 + op(1)} .

Thus, it suffices to show

sup
0≤s≤s∗

∣∣∣∣∣S
−1
0

∑
j∈Ŝ\A I(Wj ≥ s, |U (2)

j | ≤ MT )

G̃(s)
− 1

∣∣∣∣∣ = op(1).

By Lemma S2.3 and the fact G(0) + G−(0) = 1, we have G(0) =

G−(0) → 1/2. Let z0 = αp1∗/(2S0) < z1 < · · · < zhT
= 1/2, where zi =

z0 + βT exp(iς)/(2S0) and hT = [log{(S0 − αp1∗)/βT}]1/ς with βT/p1∗ → 0

for 0 < ς < 1. Introduce s0 = s∗ > s1 > · · · > shT
= 0 such that

G̃(si) = zi. By the construction, we have G̃(si)/G̃(si+1) = 1+o(1) uniformly

for i = 0, 1, . . . , hT . Thus, it suffices to show

DT := sup
0≤i≤hT

∣∣∣∣∣S
−1
0

∑
j∈Ŝ\A I(Wj ≥ si, |U (2)

j | ≤ MT )

G̃(si)
− 1

∣∣∣∣∣ = op(1).
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Let Rj = {k ∈ Ŝ\A : |Rjk| ≥ C(log T2)
−2−ν}, where C > 0 is a constant,

we have

E

 ∑
j∈Ŝ\A

{
I(Wj ≥ si, |U (2)

j | ≤ MT )− Pr(Wj ≥ si, |U (2)
j | ≤ MT | Z1)

}2

| Z1


=
∑

j∈Ŝ\A

∑
k∈Rj

{
Pr(Wj ≥ si, |U (2)

j | ≤ MT ,Wk ≥ si, |V (2)
k | ≤ MT | Z1)

−Pr(Wj ≥ si, |U (2)
j | ≤ MT | Z1)Pr(Wk ≥ si, |V (2)

k | ≤ MT | Z1)
}

+
∑

j∈Ŝ\A

∑
k ̸∈Rj

{
Pr(Wj ≥ si, |U (2)

j | ≤ MT ,Wk ≥ si, |V (2)
k | ≤ MT | Z1)

−Pr(Wj ≥ si, |U (2)
j | ≤ MT | Z1)Pr(Wk ≥ si, |V (2)

k | ≤ MT | Z1)
}

:=III + IV.

By Assumption 5, we have

III ≤
∑

j∈Ŝ\A

∑
k∈Rj

Pr
(
Wj ≥ si, |U (2)

j | ≤ MT ,Wk ≥ si, |V (2)
k | ≤ MT | Z1

)

≤
∑

j∈Ŝ\A

∑
k∈Rj

Pr
(
Wj ≥ si, |U (2)

j | ≤ MT | Z1

)

≤ rpS0G̃(si).

By Lemma 1 in Supplement Material of Cai and Liu (2016), we can get

∣∣∣∣∣ Pr(Wj ≥ si, |U (2)
j | ≤ MT ,Wk ≥ si, |V (2)

k | ≤ MT | Z1)

Pr(U
(1)
j Z1 ≥ si, |Z1| ≤ MT | Z1)Pr(V

(1)
k Z2 ≥ si, |Z2| ≤ MT | Z1)

− 1

∣∣∣∣∣ ≤ C(log T2)
−1−ν1 ,

where Z1, Z2
iid∼ N(0, 1) are independent of U

(1)
j , V

(1)
k , b > 0 and ν1 =
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min{ν, 1/2}. Then with Eq. (S2.2), we have∣∣∣∣∣ Pr(Wj ≥ si, |U (2)
j | ≤ MT ,Wk ≥ si, |V (2)

k | ≤ MT | Z1)

Pr(Wj ≥ si, |U (2)
j | ≤ MT | Z1)Pr(Wk ≥ si, |V (2)

k | ≤ MT | Z1)
− 1

∣∣∣∣∣ ≤ C(log T2)
−1−ν1 .

Hence,

IV ≤ C(log T2)
−1−ν1

∑
j∈Ŝ\A

∑
k ̸∈Rj

Pr(Wj ≥ si, |U (2)
j | ≤ MT | Z1)Pr(Wk ≥ si, |V (2)

k | ≤ MT | Z1)

≤ C(log T2)
−1−ν1S2

0G̃
2(si).

Consequently, for ∀ε > 0, by Markov inequality,

Pr(DT > ε | Z1)

≤ 1

ε2

hT∑
i=0

E
([∑

j∈Ŝ\A

{
I(Wj ≥ si, |U (2)

j | ≤ MT )− Pr(Wj ≥ si, |U (2)
j | ≤ MT | Z1)

}]2
| Z1

)
S2
0G̃

2(si)

≤ 1

ε2

{
C(log T2)

−1−ν1hT + rp

hT∑
i=0

1

S0G̃(si)

}
.

Let ς be arbitrarily close to 1, then (log T2)
−1−ν1hT = o(1). And

hT∑
i=0

1

S0G̃(si)
=

1

αp1∗
+

hT∑
i=1

1

αp1∗ + βT exp(iς)
≲ β−1

T ,

where we can choose βT arbitrarily large as long as βT/p1∗ → 0. Thus,

DT = op(1), fulfilled by Assumption 5.

Lemma S2.5. Suppose Assumptions 1–6 hold. Then as T, p → ∞,

Pr
(
|ξ(1)j − ξ∗j |/(σ̂

1/2
jj )1/2 >

√
C log(T1p1∗)

)
= o(1/(T1p1∗))

hold uniformly in A∗, where C is some positive constant.
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Proof. Without loss of generality, we assume that δ∗j > 0. For each j =

1, . . . , p, denote

Nj = max
⌊T1ϱ⌋<k≤T1−⌊T1ϱ⌋

√
k(T1 − k)

T1

∣∣∣∣∣ 1

T1 − k

T1∑
i=k+1

ε
(1)
ij − 1

k

k∑
i=1

ε
(1)
ij

∣∣∣∣∣ .
For j ∈ A∗ we have |Nj − ξ∗j | ≤ |ξ(1)j | ≤ Nj + ξ∗j . By Assumption 2, for

sufficiently large T , ξ∗j −Nj ≤ ξ
(1)
j ≤ Nj + ξ∗j . By using similar arguments

as in the proof of Lemma S2.2, the conclusion follows.

Lemma S2.6. Under Assumptions 1–6, if the threshold tp is selected such

that tp/
√
log T1 → c for some c ≥ 0, then Pr(A∗ ⊆ Ŝ) → 1 as T, p → ∞.

Proof. The Lemma S2.6 is indeed a corollary of Lemma S2.5. We have

log s̄p ≍ log(T1p1∗) by Assumption 3. For j ∈ A∗, ξ∗j ≍
√
T |δ∗j | and√

log s̄p/(
√
T |δ∗j |) → 0. Thus, the conclusion follows.

Proof of Theorem 1 Recall that

L = inf

{
s > 0 :

#{j : Wj ≤ −s}
#{j : Wj ≥ s} ∨ 1

≤ α

}
.

We prove that L ≤ s∗ so that Lemma S2.3 and S2.4 can be utilized.

First, we show that

Pr(Wj ≤ s∗, j ∈ A∗) → 0. (S2.3)
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Recall that U
(1)
j = ξ

(1)
j /(σ̂

1/2
jj )1/2, U (2)

j = β̂j/(V̂jj)
1/2. We have

Pr(Wj ≤ s∗ for some j ∈ A∗)

≤ p1∗ max
j∈A∗

Pr
{
ξ
(1)
j β̂j/(σ̂

1/2
jj V̂jj)

1/2 − ξ∗jβ
∗
j /(σ̂

1/2
jj V̂jj)

1/2

≤ s∗ − ξ∗jβ
∗
j /(σ̂

1/2
jj V̂jj)

1/2
}

≤ p1∗ max
j∈A∗

Pr
(
|ξ(1)j − ξ∗j ||β̂j − β∗

j |+ |ξ∗j ||β̂j − β∗
j |+ |β∗

j ||ξ
(1)
j − ξ∗j | ≥ ξ∗jβ

∗
j {1 + o(1)}

)
≤ 2p1∗ max

j∈A∗
Pr
(
|ξ(1)j − ξ∗j | ≥ |ξ∗j |/4

)
+ 2p1∗ max

j∈A∗
Pr
(
|β̂j − β∗

j | ≥ |β∗
j |/4

)
:= 2V + 2V I.

Under Assumption 2, 3, by Lemma S2.5, V = o(1) and by Lemma S2.2,

V I = o(1). This implies

αp1∗ ≤ α
∑
j

I(Wj ≥ s∗). (S2.4)

Then we show ∑
j

I(Wj ≤ −s∗) ≤ αp1∗ (S2.5)

hold. We do decomposition:

∑
j

I(Wj ≤ −s∗) =
∑
j /∈A∗

I(Wj ≤ −s∗) +
∑
j∈A∗

I(Wj ≤ −s∗)

From Equation (S2.3), we have
∑

j∈A∗
I(Wj ≤ −s∗) = op(1). Recall that s∗

satisfies G−(s
∗) = αp1∗/(2S0). By using similar arguments as in the proof

of Lemma S2.4, we have

∑
j /∈A∗

I(Wj ≤ −s∗) ≤
(
1

2
+

p1 − p1∗
2S0

)
{1 + o(1)}αp1∗ ≤ αp1∗
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hold if (p1 − p1∗)/S0 → 0, which is fulfilled by Assumption 3.

Combining Equation (S2.4) and (S2.5), the inequality L ≤ s∗ holds.

Thereby, with Lemma S2.3 and S2.4, with probability one,∑
j /∈A I(Wj ≥ L)∑

j /∈A I(Wj ≤ −L)
→ 1

By the definition of FDP, we have

FDP =

∑
j /∈A I(Wj ≥ L)∑
j I(Wj ≥ L) ∨ 1

=

∑
j I(Wj ≤ −L)∑

j I(Wj ≥ L) ∨ 1
×
∑

j /∈A I(Wj ≥ L)∑
j I(Wj ≤ −L)

≤ αR(L)

where

R(L) =

∑
j /∈A I(Wj ≥ L)∑
j I(Wj ≤ −L)

≤
∑

j /∈A I(Wj ≥ L)∑
j /∈A I(Wj ≤ −L)

.

Thus, lim supT,p→∞ FDP ≤ α + op(1). Then for any ϵ > 0,

FDR ≤ (1 + ϵ)αR(L) + Pr (FDP ≥ (1 + ϵ)αR(L))

which proves the rest part of the theorem.

Proof of Proposition 1. This corollary is directly derived by Eq. (S2.3)

and L ≤ s∗.

S3 Necessary lemmas

Lemma S3.1. Suppose Assumptions 5 and 6 hold, then

1

2cκ
≤ lim inf

T→∞
λmin(V̂) ≤ lim sup

T→∞
λmax(V̂) ≤ 2

cκ
,
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and
1

4cκ
≤ lim inf

T→∞
λmin(V) < lim sup

T→∞
λmax(V) ≤ 4

cκ
.

Proof. Firstly, we show some conclusions on the matrix Ξ̂. By Assumption

6, we have

Ξ− ωpIp ⩽ Ξ̂ = J ◦ Σ̂ = Ξ+ J ◦ (Σ̂−Σ) ⩽ Ξ+ ωpIp

due to the unit diagonal elements of J and Lemma S3.4, and

(Ξ+ ωpIp)
−1 ⩽ Ξ̂

−1 ⩽ (Ξ− ωpIp)
−1

By Woodbury matrix identity, we have

(Ξ+ ωpIp)
−1 = Ξ−1 −Ξ−1

(
1

ωp

Ip +Ξ−1

)−1

Ξ−1.

It is easy to see

Ξ−1

(
1

ωp

Ip +Ξ−1

)−1

Ξ−1 ⩾ 0

and

λmax

{
Ξ−1

(
1

ωp

Ip +Ξ−1

)−1

Ξ−1

}
≤ λmax

{(
1

ωp

Ip +Ξ−1

)−1
}
/λ2

min(Ξ)

≤ ωp

λ2
min(Σ){1 + ωp/λmax(Σ)}

→ 0.

Similarly, we have

λmax

{
Ξ−1

(
1

ωp

Ip −Ξ−1

)−1

Ξ−1

}
≤ ωp

λ2
min(Σ)− ωpλmin(Σ)

→ 0.

Thus, ∥Ξ̂−1
−Ξ−1∥2 = op

{
1

up(p1−p1∗)

}
.
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After that, we show ∥Ξ̂
−1/2

ΞΞ̂
−1/2

− Ip∥2 = op(1). With Ξ̂ − ϖIp ⩽

Ξ ⩽ Ξ̂+ ωpIp, we have

Ξ̂
−1/2

ΞΞ̂
−1/2 ⩽ Ip+ωpΞ̂

−1 ⩽ {1+op(1)}Ip+ωpΞ
−1 ⩽

{
1 +

ωp

λmin(Σ)
+ op(1)

}
Ip.

Similarly, we have Ξ̂
−1/2

ΞΞ̂
−1/2 ⩾

{
1− ωp

λmin(Σ)
− op(1)

}
Ip. Then

∥Ξ̂
−1/2

ΞΞ̂
−1/2

− Ip∥2 ≤
ωp

λmin(Σ)
+ op(1) = op(1).

Next, we show the eigenvalues of V̂Ŝ =
(
X̂⊤

ŜX̂Ŝ
)−1 can be bounded. By

the decomposition below,

X̂⊤
ŜX̂Ŝ =

(
Ξ̂

−1)
Ŝ,Ŝ = X⊤

ŜXŜ + {Ξ̂
−1

−Ξ−1}Ŝ,Ŝ ,

we have

λmax(X̂
⊤
ŜX̂Ŝ) ≤ λmax(X

⊤
ŜXŜ) + λmax

{
(Ξ̂

−1
−Ξ−1)Ŝ,Ŝ

}
≤ λmax(X

⊤
ŜXŜ) + λmax

(
Ξ̂

−1
−Ξ−1

)
≤ λmax(X

⊤
ŜXŜ) + ∥Ξ̂

−1
−Ξ−1∥2

≤ 2λmax(X
⊤
ŜXŜ)

and similarly, λmin(X̂
⊤
ŜX̂Ŝ) ≥ (1/2)λmin(X

⊤
ŜXŜ) for sufficiently large T ,

where the inequalities hold due to Lemma S3.5. Thus,

1

2cκ
≤ 1

2λmax(X⊤
Ŝ
XŜ)

≤ λmin(V̂) ≤ λmax(V̂) ≤ 2

λmin(X⊤
Ŝ
XŜ)

≤ 2

cκ

Finally, with the decomposition to VŜ ,

V = (X̂⊤
ŜX̂Ŝ)

−1 + (X̂⊤
ŜX̂Ŝ)

−1X̂⊤
Ŝ

(
Ξ̂

−1/2
ΞΞ̂

−1/2
− Ip

)
X̂Ŝ(X̂

⊤
ŜX̂Ŝ)

−1,
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we have

1

4cκ
≤ 1

4λmax(X⊤
Ŝ
XŜ)

≤ λmin(V) ≤ λmax(V) ≤ 4

λmin(X⊤
Ŝ
XŜ)

≤ 4

cκ
.

Lemma S3.2 (Bernstein’s inequality). Let X1, . . . , Xn be independent cen-

tered random variables almost surely bounded by A < ∞ in absolute value.

Let σ2 = n−1
∑n

i=1 E(X2
i ). Then for all x > 0,

Pr

(
n∑

i=1

Xi ≥ x

)
≤ exp

(
− x2

2nσ2 + 2Ax/3

)
.

Lemma S3.3 (Moderate deviation for the independent sum). Suppose that

X1, . . . , Xn are independent random variables with mean zero, satisfying

E(|Xj|2+δ) < ∞ for j = 1, . . . , n. Let Bn =
∑n

i=1 E(X2
i ). Then as n → ∞

Pr(
∑n

i=1 Xi > x
√
Bn)

1− Φ(x)
→ 1,

uniformly in the domain 0 ≤ x ≤ C{2 log(1/Ln)}1/2, where Ln = B
−1−δ/2
n

∑n
i=1 E(|Xi|2+δ)

and C is a constant satisfying 0 < C < 1.

Lemma S3.4. (Schott, 2016, Theorem 8.21) Let A and B be m × m

symmetric matrices. If A and B are non-negative definite, then the ith the

largest eigenvalues of A ◦B satisfies

λmin(A)

{
min

1≤i≤m
Bi,i

}
≤ λi(A ◦B) ≤ λmax(A)

{
max
1≤i≤m

Bi,i

}
,

where Bi,i is the ith diagonal element of B.
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Lemma S3.5. (Horn and Johnson, 1985, p.189) Let A be an n×n Hermite

matrix with λ1(A) ≤ . . . ≤ λn(A), let r be an integer with 1 ≤ r ≤ n, and

let Ar denote any r-by-r principal sub-matrix of A (obtained by deleting

n−r rows and the corresponding columns from A). For each integer k such

that 1 ≤ k ≤ r we have

λk(A) ≤ λk(Ar) ≤ λk+n−r(A).

Lemma S3.6. (Fan et al., 2013, Lemma 2) Suppose that A and B are

symmetric semi-positive definite matrices, and λmin(B) > cT for a sequence

cT > 0. If ∥A−B∥ = op(cT ), then λmin(A) > cT/2, and

∥A−1 −B−1∥ = Op(c
−2
T )∥A−B∥.

Lemma S3.7. (Thompson, 1972, Theorem 1) Let A be an m × n matrix

with singular values α1 ≥ α2 ≥ . . . ≥ αmin(m,n). Let B be a p×S sub-matrix

of A with singular values β1 ≥ β2 ≥ . . . ≥ βmin(p,S). Then

αi ≥ βi, for i = 1, 2, . . . ,min(p, S)

βi ≥ αi+(m−p)+(n−S), for i ≤ min(p+ S −m, p+ S − n)
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S4 Additional experiments

S4.1 Synthetic data

We add some additional synthetic data experiments to show that the ad-

vantages of the SLIP against the classical Benjamini-Hochberg procedure

are not limited to the chosen scenarios of Section 5.1.

We consider five procedures (SLIP-indep, SLIP-thresh, SLIP-lasso, BH-

asymp, BH-simul), set the nominal FDR level α = 20%, and conducted

500 replications to estimate the FDR and power of each procedure as in

the main text. First, we conduct a simulation study in the setting Σ =

I and more extreme random errors–(i) scaled bimodal distribution from

N (2, 1)/2 +N (−2, 1)/2 with σ = 1 and (ii) exponential distribution with

the parameter λ = 1. We set the proportion of activated data sequences

p1 = ⌊0.15p⌋, whose indices are randomly chosen from {1, . . . , p}. For each

activated data sequence, the activation time τ ∗j is randomly sampled from

{⌊Tϱ⌋+ 1, . . . , T − 1− ⌊Tϱ⌋} with ϱ = 0.05, and the change magnitude δ∗j

is firstly uniformly sampled from the interval [δ − 0.1, δ + 0.1] with δ > 0.1

and then its sign is flipped with probability 0.5, where δ is a parameter

controlling the signal strength. Here, we assume the covariance is unknown

and estimate the covariance matrix by Lee and Lee (2021). The result is
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presented in Figure S1.
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Figure S1: Empirical FDR and power of the SLIP and BH methods when (T, p) =

(120, 800) under the independent scenario with Σ = I.

We can see that the BH-simul outperforms the SLIP procedures for

the bimodal normal mixture random errors, as in the normal case of Fig-

ure 1. However, for the exponentially-distributed random errors, which

are asymmetric, the BH-simul severely losses the control of FDR because

the calculation of component-wise p-values is based on the normal distri-

bution. The SLIP-indep exactly controls the FDR for the bimodal case,

which is explained in the finite-sample theory. The SLIP-lasso and SLIP-

thresh maintain comparable power to the BH-simul for the bimodal case

and control the FDR well in both cases.

We have shown the impact of the dependence under the t-distributed
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Method BH-asymp BH-simul SLIP-indep SLIP-thresh SLIP-lasso

Scenario-(i)

0.0

0.1

0.2

0.3

0.4

0.5

Scenario-(ii)

F
D
R

0.00 0.25 0.50 0.75
0.00

0.25

0.50

0.75

1.00
P
o
w
er

0.6 0.8 1.0 1.2

δ

Figure S2: Empirical FDR and power of the SLIP and BH methods where the settings

are the same as in Figure 2, except that the random errors are exponentially distributed

(asymmetric).

(symmetric) random errors in Figure 2. To show the robustness of the

SLIP procedure, we rerun the simulations in Figure 2, keeping all settings

unchanged except replacing the t-distributed random errors with the expo-

nentially distributed (asymmetric) ones. The result is shown in Figure S2.

We can see that the performance of procedures in Figure S2 coincides with

that in Figure 2. The SLIP procedures (SLIP-lasso and SLIP-thresh) still

outperform the BH procedures, especially the SLIP-lasso.
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S4.2 Real-data analysis

We included the ROIs’ identifiers in the embedded data of the R pack-

age SLIP (SLIP::fmri.data$regions). We take one of the identifiers,

“2001xlyr”, as an example to illustrate the naming convention. The number

“2001” indicates the region number in the automated anatomical labeling

(AAL) template1, “2001xl” represents that this region lies in the left2 part

of the partition along x-axis to the region “2001”, “2001xlyr” represents

that this region lies in the right part of the partition along y-axis to the

region “2001xl”, and so on. Then the identifier reflects the relationship with

the AAL template and the partition path.

We list the specific identifiers of the ROIs detected by the SLIP-thresh

and SLIP-lasso in Table S1 and collect other slices of the brain maps in

Figure S3 and S4.
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Figure S3: Activations in the brain detected by the SLIP-thresh. The activated regions

are marked with red margins.
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Figure S4: Activations in the brain detected by the SLIP-lasso. The activated regions

are marked with red margins.
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Procedure Discoveries

SLIP-thresh 2001xlyr, 2001xryl, 2301xl, 2311ylxl, 2311yrxr, 3001,

5201xlylxr, 5401yryl, 6222xlyr, 6302ylzl

SLIP-lasso 2001xlyr, 2001xryl, 2301xl, 2311ylxr, 2311yrxl, 2311yrxr,

2321ylxr, 2321yr, 2601ylylyr, 5401ylyr, 5401yryl,6201ylyr,

6211yl, 6302ylzl, 8111ylxr, 8201ylylxr

Table S1: Discoveries of the SLIP-thresh and SLIP-lasso. The numbers in the front of

the names of discoveries indicate the different ROI regions.
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