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a b s t r a c t

In multiple data stream surveillance, the rapid and sequential identification of individu-
als whose behavior deviates from the norm has become particularly important. In such
applications, the state of a stream can alternate, possibly multiple times, between a null
state and an alternative state. To balance the ability to detect two types of changes, that
is, a change from the null to the alternative and back to the null, we propose a new
multiple testing procedure based on a penalized version of the generalized likelihood
ratio test statistics for change detection. The false discovery rate (FDR) at each time
point is shown to be controlled under some mild conditions on the dependence structure
of data streams. A data-driven approach is developed for selection of the penalization
parameter. Its advantage is demonstrated via simulation and a data example.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Sequential analysis is an important field with general applications to biomedicine, economics, and engineering.
onsider the classic case where one receives independent and continuous observations sequentially, and a possible abrupt
hange may occur in the mean of observations. A common criterion for detecting such a change is minimizing the expected
etection delay subject to a constraint on the average run length to a false alarm. Some techniques, including the Shewart
hart [32], the CUSUM chart [25], and the Shiryaev–Roberts procedure [26], have been shown to control the average run
ength to a false alarm, and be optimal under different scenarios. When a change is signaled by the monitoring chart, the
hart is usually restarted by setting it to some values below the signaling threshold.
However, sometimes, we keep monitoring the data stream even if a change is alarmed, in the context of which the

ean of observation experiences a departure from the prespecified level for a period of time, then it comes back to the
respecified level, and this may happen many times in a whole monitoring process. Nowadays, high-dimensional data
treams often arrive simultaneously, and we usually want to process data streams concurrently. Thus, we consider the joint
ata generating model for m data streams, the means of which experience recurrent epidemic changes heterogeneously.
uppose that m streams of observations Z1,Z2, . . . are collected over time, where Zt = (Z1,t , . . . , Zm,t )⊤ are independent

over t , and each follows a multivariate distribution with mean vector (µ1,t , . . . , µm,t )⊤ and the same covariance matrix
Σ = (σi1,i2 )m×m. For the ith stream, we consider the recurrent one-sided epidemic change model:{

µi,t = µi,0, t ̸∈ [bi,k, ei,k],
µi,t > µi,0, t ∈ [bi,k, ei,k],

(1)
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here µi,0 is the prespecified mean level for the ith stream, and [bi,k, ei,k] for k ∈ {1, 2, . . .} are a series of unknown
non-overlapping change periods in the ith data stream, and the strength of the signals, µi,t , depending on i and t , is
allowed to be heterogeneous within and across streams. Here, we consider the one-sided changes and assume that the
initial parameters µi,0 = 0 and σi,i = 1 for i ∈ {1, . . . ,m}; the cases of two-sided changes and unknown initial parameters
are discussed in Section 4. Note that the correlations σi1,i2 (i1 ̸= i2) between data streams are not needed. We call Zi,t in
the null state if µi,t = 0 and in the alternative state if µi,t > 0. We use ϑi,t to denote the state of Zi,t , where ϑi,t = 1 for
the alternative state and ϑi,t = 0 for the null state. An ideal goal is to make decisions δi,t = δi,t (Z1, . . . ,Zt ) to recover the
signals ϑi,t = 1.

An illustrative example of the considered setting is fund investment. If we want to invest a sum of money in a
fund, the most ideal case is to make investment when the fund’s returns are positive and withdrawal when the fund’s
returns become zero, and repeat this process for each positive return period. We usually want to operate investments
and withdrawals for a large pool of funds rather than a single one to further expand profits. Therefore, the problem boils
down to discovering the positive change periods of funds. Note that even if changes are signaled by the monitoring charts,
the stock market remains operational. Thus, the scenario of interest is that the stream can switch, perhaps many times,
between a null state and alternative states.

A direct idea for recovering ϑi,t = 1 is to use the Shewart chart [32] giving that δi,t = 1 if Zt ≥ c for some constant
c , but the power of the Shewart is low when the magnitude of change is not large. Other methods, such as CUSUM and
the Shiryaev–Roberts procedure, employ accumulative statistics based on Z1, . . . ,Zt to give δi,t = 1 if the statistic for
the ith data stream at time t exceeds a given threshold. If we directly use the accumulative methods, after signaling
a change, these methods would increase their statistics with receiving more samples from alternative states to make
more significant rejections. However, such accumulation makes the statistic extremely large after just experiencing a
long change period, and this will lead to a slow falling back below the threshold. Besides the aforementioned problems
occurred in each data stream, the multiplicity also arises when high-dimensional data streams are considered.

The notation of the false discovery rate (FDR) was introduced in the seminal work of Benjamini and Hochberg [1]
for handling the multiplicity, then they proposed the Benjamini–Hochberg procedure to control the multiplicity while
providing considerable detection power. Previous studies on change detection, including [9,15,19,22,35,40], consider
various applications of the Benjamini–Hochberg procedure for statistical process control or surveillance. However, the
issues aforementioned still persist, because these approaches only focus on the change from null to alternative but cannot
provide sufficient protection against the changes from alternative to null, and thus yield excessive false positive results
in our setting. Gandy and Lau [13] proposed a variant of CUSUM chart to alleviate such long return delays, with the form

Si,0 = 0, Si,t = min{max(Si,t−1 + Zi,t − ki, 0),Hi}, (2)

where ki is the reference value and Hi > 0 is a constant to specify an upper boundary for the ith data stream. They apply
the Benjamini–Hochberg procedure [1] to decide δi,t while controlling the false discovery rate at the nominal level at
each time t . Although [18] provided some discussions on the effect of the upper bound constant Hi under a univariate
monitoring setting, the selection of tuning parameters in (2) remains unsolved in practice, and even becomes more difficult
owing to the consideration of high-dimensional data streams.

Another possible solution is to restart the monitoring process for the data stream whose monitoring statistic alarms
a change. Recently, for the restarting CUSUM in the sequential multiple change-point setting, [21,44] provided non-
asymptotic analysis on the probability to a false alarm and the upper bound of the detection delay with high probability.
Their methods are valid for a single data stream, but in our setting of high-dimensional data streams, how to control the
multiplicity for their methods remains unsolved and needs new construction and theory. Sequential change detection
problems in multiple data streams were considered by [4,5,24,30,31,34,42,45], amongst others. Their settings differ
completely from ours because they aim to minimize the overall expected delay while controlling the average run length
to the null hypothesis that none of the data streams experience changes.

To balance the ability to detect two types of changes, that is, changes from the null to the alternative and then back
to the null, we propose a new procedure based on a penalized version of the generalized likelihood ratio (GLR)-based
scheme [33]. The new method does not need to pre-choose reference values like the modified CUSUM of [18]. The
penalization term is constructed to detect the change-points ei,k, and the penalization parameter is determined by a
pre-specified power loss level relative to the GLR without penalization. Under some mild conditions on the dependence
structure of data streams, the FDR is shown to be controlled at each time point. A data-driven approach to the selection
of the penalization parameter is developed, which gives the new method an edge over existing methods in terms of
FDR control and detection delay. Some practical guidelines including a robust variant of the proposed procedure are also
provided. Both numerical studies and real data analysis support the proposed procedure.

The remainder of this paper is organized as follows. Our new penalized approach and an asymptotic approach for
choosing the penalization parameter are described in Section 2. In Section 3, we investigate the theoretical properties
of the proposed method. We further provide some practical guidelines in Section 4, including a robust variant of the
proposed procedure. Section 5 provides extensive simulation studies and a real data example on fund selection as an
illustration. Section 6 concludes the paper. Technical details are provided in the Appendix. Some additional numerical
studies can be found in the supplementary material.
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Fig. 1. An example of 1000 observations from N (µt , 1), where µt = 1 for t ∈ [21, 170] ∪ [471, 620] ∪ [921, 1000] and µt = 0 otherwise. The red
line indicates the mean of Zt . Two blue dashed vertical lines are the margins of the sliding window with window size 200: (top, left) t = 400; (top,
right) t = 560; (bottom, left) t = 650; (bottom, right) t = 780.

2. Methodology

2.1. A penalized approach

In a sequential setting, where the epidemic changes may happen many times, a sliding window is useful to infer the
current states because, in a proper window with size (w+1), a single change structure may be observed. Roughly speaking,
for the ith data stream, four cases may happen in a proper window: (i) µi,j = 0 for all j ∈ [t − w, t]; (ii) a change from
null to alternative; (iii) an epidemic change from null to alternative and back to null; and (iv) a change from alternative
to null. See Fig. 1 for illustration. To recover the signals ϑi,t = 1, only case (ii) should be declared as in a change period,
and cases (iii) and (iv) should be not declared because a change period has passed and the current state at time t is null.
In this context, with the target only at case (ii), it is difficult for the traditional change-point detection methods designed
for either the abrupt or epidemic change, because these methods lack the ability to differentiate cases (ii) and (iii).

Next, we introduce the proposed penalization approach. We consider the generalized likelihood ratio (GLR) statis-
tic [33]:

T b
i,t = max

τ={0,...,w}

∑t
j=t−τ Zi,j

√
τ + 1

(3)

We call T b
i,t the detection statistics. GLR is a good detection procedure that performs well in detecting mean shifts [17].

Other statistics, such as the Shiryaev–Roberts statistic [38] and CUSUM statistic, can also play the role of the detection
statistic. Here, we use GLR as it does not involve unknown parameters.

We expect that the changes from null to alternative can be detected well with GLR. However, the detection statistic
T b
i,t is also large if the epidemic change happens completely in the window (see the bottom-left panel of Fig. 1), which

causes the false rejection if we only use the detection statistic. Inspired by this fact, if we consider another statistic T e
i,t

which can detect the change from alternative to null, the epidemic change in the window also makes T e
i,t large. We call

T e
i,t the return statistic. A concrete implement of T e

i,t is

T e
i,t = max

τ∈{0,...,w−1}

(∑t−τ−1
j=t−w Zi,j
w − τ

−

∑t
j=t−τ Zi,j
τ + 1

)/( 1
w − τ

+
1

τ + 1

)1/2

, (4)

which is the CUSUM statistic for one-sided changes in the batch setting [6]. The form of T e
i,t in (4) is not necessary, and

other statistics playing the same role as (4) can be also considered. Then, we propose to penalize T b
i,t by subtracting scaled

T e
i,t , i.e.,

Ti,t (θ ) = T b
i,t − θ × T e

i,t , (5)

where θ ∈ [0, ∞) is a tuning parameter used to control the amount of penalization. The proposed statistic Ti,t can be
expected to be positively large only when a change from null to alternative happens after setting proper penalization
parameter θ and window size w. Thus, Ti,t can be used to recover the states of Zi,t by a thresholding rule.

It is worth noting that the choice of θ is important and involves with a trade-off between the detection power and
false detections. For small θ , it will yield a lot of false detections after an epidemic change; while for large θ , the detection
power is low due to overlarge penalization. We will introduce a data-driven selection criterion for θ in Section 2.3.
3
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.2. Dynamic multiple testing

We target to make inference on (δ1,t , . . . , δm,t ) at each time t based on observations Zt−w, . . . ,Zt in the sliding window.
o avoid stringent assumptions on data generating process, we consider the following m hypotheses at time t:

H0
i,t : µi,t−w = · · · = µi,t = 0, versus H1

i,t : µi,j > 0, for some j ∈ [t − w, t]. (6)

Then, the true state to recover in this context is ϑw
i,t , which satisfies ϑw

i,t = 1 if the alternative hypothesis in (6) is true
and ϑw

i,t = 0 otherwise. Let I0;t = {i : ϑw
i,t = 0} and I1;t = {i : ϑw

i,t = 1} denote the true null set and alternative set
at time t , respectively. By this modification from ϑi,t to ϑw

i,t , we do not need to place restrictions on the data generating
mechanism since the hypotheses are based on observations in the window, and thus expand the scope of the procedure
developed below. Note that the alternatives should be distinguished since they include three types of changes and only
one change is desired. So we term the discovery of changes with µi,t > 0 (see the top-right panel in Fig. 1) as power and
the discovery of changes with µi,t = 0 (see the bottom panels in Fig. 1) as pseudo power, respectively. This partitions the
alternative set I1;t into A1;t = {i ∈ I1;t : µi,t > 0} and B1;t = {i ∈ I1;t : µi,t = 0}. Our goal is to make discoveries of A1;t at
each time t . Note that we treat the discoveries in B1;t as true positives due to the formulation in (6), but we hope data
streams in B1;t should be discovered as less as possible.

The penalized statistic Ti,t (θ ) is expected to be positively large when a change from null to alternative happens in the
window. Hence, we proceed to design a multiple testing procedure to determine the threshold for Ti,t (θ ) and reject the
hypotheses with their statistics greater than the threshold. The following empirical processes are defined:

Vt (q, θ ) = #{i ∈ I0;t : Ti,t (θ ) ≥ q}, S1;t (q, θ ) = #{i ∈ A1;t : Ti,t (θ ) ≥ q},
Rt (q, θ ) = #{i ∈ [m] : Ti,t (θ ) ≥ q}, S2;t (q, θ ) = #{i ∈ B1;t : Ti,t (θ ) ≥ q},

(7)

where [m] = {1, . . . ,m}, S1;t (q, θ ) is the number of true rejections in A1;t at the current time t , whilst S2;t (q, θ ) is used
to count the number of true rejected data streams in B1;t . As a convention, Vt (q, θ ) and Rt (q, θ ) are the number of false
rejections and the total number of rejections, respectively. The false discovery proportion with respect to the threshold q is
defined as FDPt (q, θ ) = Vt (q, θ )/{Rt (q, θ )∨1} with a∨b = max{a, b}. The false discovery rate is FDRt (q, θ ) = E{FDPt (q, θ )}.

To estimate and control FDR at time t , the unobserved term Vt (q, θ ) is estimated with the penalized test statistics
{Ti,t (θ ), i ∈ {1, . . . ,m}}. As discussed by [36], if the values of Ti,t (θ ) satisfy the weak dependence assumption so that
Card(I0;t )−1Vt (q, θ ) converges to a distribution function almost surely when the number of the streams goes to infinity,
then a consistent estimate of Vt (q, θ ) can be obtained. Hence, it is theoretically important to seek conditions on Σ under
which the weak dependence assumption of Ti,t (θ ) is satisfied. A sufficient condition is Condition C1 given in Appendix.
Some commonly used covariance matrices, such as the autoregressive covariance structure or the banded covariance
structure, satisfy Condition C1. Note that the correlation structure is not required to implement the proposed procedure;
it is only used to justify the theoretical results.

Proposition 1. Let F0;t (q, θ ) = Pr{Ti,t (θ ) ≥ q | i ∈ I0;t} be the true null distribution of Ti,t (θ ) under H0
i,t , and

F i
1;t (q, θ ) = Pr{Ti,t (θ ) ≥ q | i ∈ A1;t} and F i

2;t (q, θ ) = Pr{Ti,t (θ ) ≥ q | i ∈ B1;t} be the two types of alternative distribution for
i ∈ A1;t and i ∈ B1;t . Suppose that Conditions C1–C2 in the Appendix hold. For a fixed θ and window size w, we have

(i) Card(I0;t )−1Vt (q, θ ) converges to the true null distribution F0;t (q, θ ) almost surely.
(ii) If we further assume that

Card(A1;t )−1
∑
i∈A1;t

F i
1;t (q, θ ) → F1;t (q, θ ), Card(B1;t )−1

∑
i∈B1;t

F i
2;t (q, θ ) → F2;t (q, θ ),

then the empirical processes S1;t (q, θ ), S2;t (q, θ ) and Rt (q, θ ) in (7) converge in the sense that Card(A1;t )−1S1;t (q, θ ) →

F1;t (q, θ ), Card(B1;t )−1S2;t (q, θ ) → F2;t (q, θ ) and Card(It )−1Rt (q, θ ) → Ft (q, θ ) almost surely, where Ft (q, θ ) =

π0;tF0;t (q, θ ) + π1;tF1;t (q, θ ) + π2;tF2;t (q, θ ) with π0;t = limm→∞ Card(I0;t )/m, π1;t = limm→∞ Card(A1;t )/m and
π2;t = limm→∞ Card(B1;t )/m being the asymptotic proportions of null, and two types of alternatives.

f we further assume that the observations at each time point, i.e., Zt , follows a multivariate normal distribution, the conclusions
n (i) and (ii) continues to hold when Condition C1 is replaced by {m(m − 1)}−1∑∑

i1 ̸=i2
σi1,i2 = O(m−δ), for δ > 0.

To validate the convergence of the empirical process Rt (q, θ ), in Proposition 1 (ii) we require the averaged alternative
istribution functions converges as m → ∞, which is easily satisfied if the data streams in the alternative set share the
ame temporal structure. In the case where the locations of change points and the signal strength are heterogeneous but
re sampled from some prior distributions, the convergence also hold.
Proposition 1 indicates that the penalized test statistics satisfy the weak dependence assumptions in [36], and thus the

tandard estimation and controlling procedure [36] can be applied directly using F0;t (q, θ ). The estimation and controlling
pproaches are outlined as follows:
4
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Estimation approach: A conservative estimate of the FDRt (q, θ ) is given by

F̂DRλ;t (q, θ ) =
V̂t (q, θ )

Rt (q, θ ) ∨ 1
=

mπ̂0;t (λ, θ )F0;t (q, θ )
Rt (q, θ ) ∨ 1

, (8)

where π̂0;t (λ, θ ) =
∑m

i=1 I(Ti,t (θ ) < λ)/[m{1−F0;t (λ, θ )}] is an upper-biased estimate of π0;t . The tuning parameter λ
is chosen such that a negligible number of hypotheses have penalized test statistics of less than λ in the alternative
set. See Section 4 for more discussions.
Controlling approach: Given a significance level α, the data-driven threshold is

q̂α;t (θ ) = inf
q

{
q : F̂DRλ;t (q, θ ) ≤ α

}
. (9)

Hypotheses with a value of Ti,t (θ ) exceeding q̂α;t (θ ) are rejected.

We refer to this procedure as penalization-assisted dynamic detection (PADD).

2.3. A selection criterion for the penalization coefficient

We discuss the effect of the penalization coefficient θ on the FDR and detection power of the PADD procedure and
propose a criterion for selection of θ by setting a fixed percentage of power loss. This can be achieved by connecting the
frequentist version of FDR to a Bayesian rationale in terms of a two-group random mixture model, which follows directly
from the Bayes theorem. According to [11], the Bayesian FDR is defined as the posterior probability of a null hypothesis
being true if the test statistic is within the rejection region:

Fdrt (q, θ ) = Pr{H0
i,t | Ti,t (θ ) ≥ q} =

π0;tF0;t (q, θ )
Ft (q, θ )

.

Based on the results in Proposition 1, the frequentist FDR converges to the Bayesian FDR [36].
To express the detection power when the Bayesian FDR is controlled at α, we note that (9) is asymptotically equivalent

to:

qα;t (θ ) = inf{q : k(θ ) × Fdrt (q, θ ) ≤ α}, (10)

where k(θ ) = 1 + (1 − π0;t ){1 − F12;t (λ, θ )}/[π0;t{1 − F0;t (λ, θ )}]. Accordingly, the overall detection power for both types
f alternatives is evaluated by Pr{Ti,t (θ ) ≥ qα;t (θ ) | i ∈ A1;t ∪ B1;t} ≡ {π1;tF1;t (qα;t (θ ), θ )+π2;tF2;t (qα;t (θ ), θ )}/{π1;t +π2;t},
enoted as F12;t (qα;t (θ ), θ ). We can see that the overall power F12;t (qα;t (θ ), θ ) consists of the power F1;t (qα;t (θ ), θ ) and
he pseudo power F2;t (qα;t (θ ), θ ). Intuitively, a small θ leads to a high power, but also to a high pseudo power.

We use a toy example to illustrate the power, pseudo-power, and overall power. We generate m = 2000 data streams
ver a period of 200 time points, 10% of which are experiencing epidemic changes with µi,t = 0.4, from time t = 111 to
he present time t = 200, and another 10% of which have already changed from a signal period [bi, ei] = [121, 170] with
i,t = 0.2 to the null state for thirty time units. The left panel of Fig. 2 shows the FDR and three types of detection powers
valuated with the data-driven threshold q̂α;t (θ ), where α = 0.2, w = 100, and λ = 0. We observe that the FDR levels
an be well controlled and that both types of detection powers decrease smoothly when the penalization coefficient θ
s increased. This motivates us to select θ by setting a fixed percentage of power loss relative to the case in which no
enalization is applied. More specifically, given a fixed percentage of power loss β , θ is selected by

θ0;t = sup
{
0 ≤ θ < ∞;

F12;t (qα;t (θ ), θ )
F12;t (qα;t (0), 0)

≥ 1 − β

}
. (11)

To estimate θ0;t , the detection power functions must be estimated. By (10), the power function is proportional to the
marginal distribution if the Bayesian FDR is strictly controlled at the level α, that is,

Ft (qα(θ ), θ ) =
1 − π0;t

1 − α/k(θ )
F12;t (qα(θ ), θ ).

n the cases in which π0;t ≈ 1 or F12;t (λ, θ ) ≈ 1, the term k(θ ) is approximately 1. As a result, the criterion (11) can be
eplaced by

θ0;t = sup
{
0 ≤ θ < ∞;

Ft (qα;t (θ ), θ )
Ft (qα;t (0), 0)

≥ 1 − β

}
. (12)

ith the data-driven threshold q̂α;t (θ ) in (9) and the empirical estimate of the marginal distribution, a data-driven choice
of θ in (12) is given by

θ̂t = sup
{
0 ≤ θ < ∞;

Rt (̂qα;t (θ ), θ )/m
Rt (̂qα;t (0), 0)/m

≥ 1 − β

}
. (13)

As a side note, the upper boundary H in the modified CUSUM [18] plays a similar role to θ , reducing the pseudo-power
with a certain loss of the desired power. For the ith data stream, they employ the modified CUSUM in (2) with parameters
5
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Fig. 2. The curves of the FDR and three types of detection power. Left panel: the PADD with different values of θ ; Right panel: the modified CUSUM
ith different upper boundaries H .

ki,Hi). Then they adopt the Benjamini–Hochberg procedure to control the FDR at each time t . The right panel of Fig. 2
depicts the FDR and three types of detection power for the modified CUSUM with various values of Hi = H under the
same setting as in the left panel. The parameter ki is chosen as 0.15 for all streams. A small value of H yields conservative
DRs and little power. This can be understood by noting that good control of the FDR for the modified CUSUM needs the
-values corresponding to Si,t under the null to follow an approximately uniform distribution. However, this requirement
ould be violated when H is not sufficiently large, because the null distribution of Si,t has a point mass at H . How large

the H should be depends on ki, α, π0;t , and the alternative distribution. We also observe that the power and pseudo-power
exhibit similar patterns as the H increases, which demonstrates the importance of choosing a suitable H . As opposed to
sing a fixed H in the modified CUSUM, the θ in PADD is determined dynamically based on a fixed percentage of power
oss. One of our main contributions is to theoretically establish the FDR control with a data-driven choice of θ , which will
e highlighted in the next section.

. Theoretical properties

We first show that the estimation approach can conservatively estimate the FDR uniformly for all thresholds q and θ .
Technical conditions are given in the Appendix. Throughout this section, we assume that λ and w are fixed.

Theorem 1. Suppose Conditions C1–C3 in the Appendix hold. Then, for each time t > w,

lim
m→∞

inf
q≤q̄

inf
0≤θ≤θ̄

{
F̂DRλ;t (q, θ ) − FDRt (q, θ )

}
≥ 0, almost surely, (14)

where q̄ ∈ (−∞, ∞) and θ̄ ∈ (0, ∞) are two sufficiently large constants.

Because the support set of θ contains infinite choices of value, careful investigation is required to control the FDR of
the proposed PADD procedure using the data-driven threshold θ̂t . If θ̂t converges to its true value, say θ0;t , the possible
range of θ in (13) will be reduced to a local interval around the true value θ0;t when m is sufficiently large, thus allowing
the FDR to be controlled.

Proposition 2. Under Conditions C1–C5 in the Appendix, θ̂t → θ0;t almost surely.

By Theorem 1 and Proposition 2, we can show that the PADD method with the data-driven threshold q̂α;t (̂θt ) is able
to control the FDR.

Theorem 2. Suppose that Conditions C1–C5 hold. Then lim supm→∞

{
FDRt (̂qα;t (̂θt ), θ̂t )

}
≤ α, for each time t > w.

We next turn to a theoretical justification of the observation that the PADD procedure achieves a lower pseudo power
than the standard GLR method. Let qα;t (θ ) denote the threshold such that Fdrt (q, θ ) = α. Then, the pseudo-power function
an be formulated by F (q (θ ), θ ) = β ′F (q (θ ), θ ), with β ′

= (1/α − 1)π /(1 − π ). Our goal is to quantify the
2;t α;t 0;t α;t 0;t 0;t
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seudo-power that can be reduced by combining the statistic T e
i,t with T b

i,t . Using similar techniques in [8], the ratio of
the power of the proposed procedure to the method using the GLR (θ = 0) can be derived as

F2;t (qα;t (θ ), θ )
F2;t (qα;t (0), 0)

=
F0;t (qα;t (θ ), θ )
F0;t (qα;t (0), 0)

= 1 +

∂
∂θ

{
F0;t (qα;t (θ ), θ )

}⏐⏐
θ=0θ

F0;t (qα;t (0), 0)
+ O

(
θ2)

= 1 + ∆(θ ) + O
(
θ2) .

In our asymptotic analysis on B1;t , we assume that e − b → ∞, t − e → ∞ and 0 < limt→∞(e − b + 1)/(t − b + 1) →

γ < 1 as t → ∞. In addition, we consider the case with w ≤ (e − b + 1) and suppose the change magnitude µ
satisfies limt→∞

√
t − b + 1µ/(log logw)1/2 → ∞. Derivations in the Appendix yield that the ratio of power reduced is

pproximated by

1 + ∆(θ ) = 1 −
C ×

{√
γ (1 − γ )

√
t − b + 1µ − (2 log logw)1/2

}[{
∂F2;t (q,θ )

∂q − β ′
∂F0;t (q,θ )

∂q

}⏐⏐⏐
q=qα;t (θ )

]⏐⏐⏐
θ=0

×
θ

F0;t (qα;t (0), 0)
+ O(θ2), (15)

here C is a positive constant independent of θ . A similar argument by [14] yields that[{∂F2;t (q, θ )
∂q

− β ′
∂F0;t (q, θ )

∂q

}⏐⏐⏐
q=qα;t (θ )

]⏐⏐⏐
θ=0

< 0.

ombining these, we have 1 + ∆(θ ) < 1. In other words, there is a greater probability that the proposed procedure will
not make a discovery at time t for i ∈ B1;t , which results in a lower pseudo-power.

As illustrated in Section 2.3, both power and pseudo power are expected to be decreased as θ increases. So we sacrifice
ome detection power to reduce the pseudo power, where the power loss is determined by the user specified parameter
. As the upper bound H in (2) [13], there exists a trade-off in the PADD procedure between detecting changes from
ull to alternative and not detecting changes from alternative to null. But the trade-off is determined by a meaningful
arameter β , which is the percentage of power loss and can be flexibly specified by the user.

4. Practical guidelines

4.1. Choice of the tuning parameter λ

The selection of λ to estimate the null proportion is well studied in the multiple testing literature. Benjamini and
Hochberg [2] suggested a simple data-driven approach for the selection of λ that achieves a bias–variance trade-off. The
effect of the choice of λ on the variance part vanishes as the number of tests increases. Thus, one prefers to choose a
small λ to mitigate the bias effect. To this end, λ = 0 is recommended in our PADD procedure to guarantee that no bias
occurs with a high probability, say F12;t (λ, θ ) ≈ 1.

4.2. Unknown initial parameters

We assumed µi,0 and σi,i are known for i ∈ {1, . . . ,m} in the previous sections. When the initial mean parameters
are unknown, invariant transformations [3,29] can be used. Yakir [43] then explored more general cases which include
both initial mean and variance parameters are unknown. Formally, for each data stream at time t , we consider a set
of invariant statistics (Xi,1, . . . , Xi,t ) = ϕ(Zi,1, . . . , Zi,t ) for some transformation ϕ, the initial parameters after which are
known. Then, the penalized statistic (5) is computed with Xi,1, . . . , Xi,t instead of Zi,1, . . . , Zi,t , and the PADD procedure can
be still applied. Concretely, for unknown µi,0 and known σi,i, an invariant function [29] is Xi,1 = 0, Xi,2 = Zi,2 − Zi,1, Xi,3 =

Zi,3 − Zi,1, . . ., whose initial mean is zero. For both unknown µi,0 and σi,i, suppose one can obtain a learning sample
Zi,−n, Zi,−n+1, . . . , Zi,−1, n ≥ 2, of prechange observations. Then, the invariant statistics from [43] are Xi,t = (Zi,t − Z̄−n)/s−n,
t ∈ {1, 2, . . .}, where Z̄−n =

∑n
i=1 Z−i/n and s2

−n =
∑n

i=1(Z−i − Z̄−n)2/(n − 1).

4.3. Robust penalization-assisted dynamic detection

The statistics T b
i,t in (3) and T e

i,t in (4) are close to the likelihood ratio forms based on normally distributed data. So good
performance can be expected for PADD when underlying data follow the (multivariate) normal distribution. Indeed, utiliz-
ing a nonparametric transformation technique [23,27], PADD can be extended to a robust procedure against heavy-tailed
or skewed distributions. For the ith data stream, we consider the sequential ranks {r ti,j}

t
j=t−w at current time t , where

r ti,j =
1

j − (t − w) + 2

j∑
k=t−w

I(Zi,k ≤ Zi,j), j ∈ [t − w, t]. (16)

If there is no change, r ti,j are independent and asymptotically Uniform[0, 1] distributed. Then, the distribution of Φ−1(r ti,j)
tends to that of Φ−1(Uniform[0, 1]), which is rightly Φ(t), where Φ(t) is the cumulative distribution function of the
standard normal random variable. Hence, after replacing {Zi,j}tj=t−w with {Φ−1(r ti,j)}

t
j=t−w , the robust surveillance statistic is

T r (θ ) = T r,b
− θ × T r,e

,
i,t i,t i,t

7



L. Du and M. Wen Journal of Multivariate Analysis 198 (2023) 105224

w

W
r
a
p
b

4

H

A
A

4

p
d
s
i
i

r
T

w
t

5

5

here θ ∈ [0, ∞) is a tuning parameter playing the same role as in (5), and

T r,b
i,t = max

τ∈{0,...,w}

∑t
j=t−τ Φ−1(r ti,j)

√
τ + 1

,

T r,e
i,t = max

τ∈{0,...,w−1}

(∑t−τ−1
j=t−w Φ−1(r ti,j)

w − τ
−

∑t
j=t−τ Φ−1(r ti,j)

τ + 1

)/( 1
w − τ

+
1

τ + 1

)1/2

.

e expect the asymptotic behavior of T r
i,t (θ ) is similar to that of Ti,t (θ ), due to the asymptotic property of sequential

anks. Therefore, the PADD procedure in Section 2.2 and the data-driven selection criterion for θ in Section 2.3 are both
pplicable to {T r

i,t (θ )}
m
i=1. For the sake of compactness, we omit the statement on making discoveries and selecting penalty

arameter θ . We abbreviate this robust PADD procedure as R-PADD, which also enjoys the benefit of not being affected
y the unknown initial parameters.

.4. Two-sided changes

In practice, we are often concerned with both positive and negative shifts; that is, the alternative hypothesis in (6) is
1
i,t : µi,j ̸= 0, for some j ∈ [t − w, t]. As a convention, the lower-sided statistics can be similarly defined as

Lbi,t = max
τ∈{0,...,w}

−

∑t
j=t−τ Zi,j

√
τ + 1

, Lei,t = max
τ∈{0,...,w−1}

−

(∑t−τ−1
j=t−w Zi,j
w − τ

−

∑t
j=t−τ Zi,j
τ + 1

)/( 1
w − τ

+
1

τ + 1

)1/2

.

ccordingly, T̃i,t (θ ) = max{Ti,t (θ ), Lbi,t − θLei,t} can be used to replace Ti,t (θ ) in the definition of the proposed procedure.
n extension to two-sided changes for the robust statistic T r

i,t (θ ) can be derived similarly.

.5. Choice of the window size w

We specify a constant window size w in the null hypotheses (6). If the window size w matches the length of a signal
eriod, as illustrated by Fig. 1, the proposed procedure will be effective. However, the length of the alternative periods
epends on the specific stream and time point. The T b

i,t and T e
i,t with an excessively small w would fail to accumulate

ufficient evidence after the changes, whilst an excessively large w may result in contamination of the most recent
nformation. Accordingly, the detection power would be degraded to a certain degree. Ideally, w should be determined
n an adaptive manner.

Let wi,t be the window size used for the ith stream at time t . We allow the window size to grow as time proceeds but
eset the window size to one if there is evidence that the stream has returned to the null. The change-point test statistic
e
i,t can be used to detect such a transition. That is, w is selected as

wi,t =

{
wi,t−1 + 1, if T e

i,t < c,
1, if T e

i,t ≥ c,

here the cutoff c should be set high to guarantee that resetting does not occur frequently. The numerical results show
hat selection of c as the upper 0.5% quantile of the null distribution of T e

i,t suffices for most practical uses.

. Numerical studies

.1. Competitors

Before getting into simulations, we introduce some competitors of the proposed PADD procedure.

CUSUMs We consider the aforementioned modified CUSUM chart (see [13] and (2)). For all data
streams, we pick the same tuning parameters, i.e., ki ≡ k and Hi ≡ H . Two combinations of
parameters are examined, (k,H) = (0.25, 20) (CUSUM1) and (k,H) = (0.5, 15) (CUSUM2).

GLRs We compare with the GLR statistics, which has the forms (3) for abrupt changes (GLR-A)
and Gi,[t−w,t] = maxt−w≤τ2≤t maxt−w−1≤τ1<τ2

(∑τ2
j=τ1+1 Zi,j

)
/
√

τ2 − τ1 for epidemic changes
(GLR-E).

SRs We also consider the Shiryaev–Roberts type procedures (e.g., [16,38,39]), which take the
forms J ti,t for abrupt changes (SR-A) and Ji,[t−w,t] = (w + 1)−1 maxt−w≤τ2≤t J ti,τ2 for epidemic
changes (SR-E), where J ti,τ2 =

∑τ2
k=t−w exp

{∑τ2
j=k

(
Zi,jµi,j − µ2

i,j/2
)}

. Since µi is unknown,
we use the sample mean µ̂k

i,j to substitute µi,j as formulated in [38], where
µ̂k

i,j := (j − k)−1∑j−1
ℓ=k Zi,ℓ is the sample mean based on {Zi,k, . . . , Zi,j−1} and µ̂k

i,k = 0.
Shewart The classic Shewart chart [28,32] based procedure (Shewart) is also compared.
8
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In summary, we have eight procedures including the proposed procedure, PADD, CUSUM1, CUSUM2, GLR-A, GLR-E,
SR-A, SR-E, and Shewart.

Like R-PADD, for the procedures based on GLRs or SRs, we can substitute {Zi,j}tj=t−w by {Φ−1(ri,j)}tj=t−w using sequential
ranks (16), which yields robust versions of GLR- and SR-type statistics. We term them as R-GLR-A, R-GLR-E, R-SR-A and
R-SR-E, respectively. The CUSUM and Shewart are not based on a sliding window [t−w, t], so the technique of sequential
anks is not applicable.

For all procedures, we simulate the null distribution in (8) with standard normal random variables. Then, for FDR
ontrol, we apply Eq. (8)–(9) to each procedure mentioned above to decide the rejection threshold. The window sizes of
he mentioned procedures except CUSUMs and Shewart are set as w = 200 and the parameter λ used to estimate the
true null proportion π0;t is fixed at the median of the simulated null distribution for all procedures including PADD for
fairness. We also run the proposed PADD method with a data-driven choice of window size, and the results are similar
to those with a carefully chosen w that depends on the simulation designs.

5.2. Simulation results

In this section, we evaluate the performance of our proposed procedures via simulations. We study the accuracy of
FDR control and then compare the power and pseudo power of the PADD method with those of other competitors. All
results in this section were obtained with 500 replications. The R and Matlab codes are available upon request.

We first simulate Zj with m = 500 dimensions from a multivariate normal distribution with a mean vector µj =

(µ1,j, . . . , µm,j)⊤ and a common covariance matrix Σ =
(
ρ|i1−i2|

)
m×m sequentially for j ∈ {1, . . . , T }, with T = 2000 and

ρ = 0.5. A proportion π1 of data streams experience multiple periodic mean changes, while the other data streams keeps
the mean level µi,j = 0, throughout the monitoring process. The data stream in the alternative set obeys the recurrent
one-sided epidemic change model (1) with µi,0 = 0, i.e.,{

µi,t = 0, t ̸∈ [bi,k, ei,k],
µi,t > 0, t ∈ [bi,k, ei,k],

which alternates between the null state and alternative state. Each data stream in the alternative set follows the process
below to be generated. For generating change periods of the ith data stream, the location of the first change-point bi,1 is
randomly chosen from the set {11, 21, . . . , 101}. Then, the ith data stream experiences a period of mean changes with
length Li,1, and this change period is [bi,1, ei,1], where ei,1 = bi,1 + Li,1 − 1. After that, a null period (µi,t = 0) with length
Lnull is observed, so the new change period begins at bi,2 = ei,1 + Lnull. By repeating this generating process, we decide
the change periods [bi,k, ei,k] for the ith data stream. In our simulations, we set Lnull = 200. For the mean level µi,t in
[bi,k, ei,k] and the length of change period Li,k, we explore two scenarios:

Scenario I: Consider homogeneous change periods [bi,k, ei,k] with length Li,k = ei,k−bi,k+1 and signal µi,j = δi,k for j ∈

[bi,k, ei,k]. For each change period [bi,k, ei,k], parameters (Li,k, δi,k) are randomly selected from {(100, 1), (200, 5), (300,
0.2)}.
Scenario II: Consider mixed regimes of change periods [bi,k, ei,k] with length Li,k = ei,k−bi,k+1. For each change period
[bi,k, ei,k], the period length Li,k is randomly sampled from {50, 100, . . . , 500} and the signal magnitudes {µi,j}

ei,k
j=bi,k

randomly adopt one of the following four regimes: (i) constant alternative with µi,j = 0.5; (ii) relative constant
alternative with µi,j = 5/Li,k; (iii) linear drift alternative with µi,j = 2/(ei,k+1− j) and (iv) arbitrary drift alternative
with µi,j being randomly sampled from {0.2, 0.5, 1}.

These complex setups are used to assess the efficiency and robustness of the proposed testing procedure. The FDR level
α and the power loss percentage β in PADD are both set at 0.2.

We first confirm that the proposed method can substantially reduce the pseudo-power, whilst the FDR can be
controlled at the significance level. Table 1 shows the mean and standard deviation of the empirical FDR, power and
pseudo-power across T = 2000 time points for all procedures. The FDRs of the PADD procedure can be controlled at
the nominal level α = 0.2 within acceptable ranges. Compared to GLRs, SRs and CUSUMs, the PADD procedure is able
to considerably reduce the pseudo-power in this recurrent scheme. This is consistent with our theoretical analysis and
demonstrates the validity of this method of selecting the penalization coefficient θ . The Shewart provides both low power
and pseudo power in the two scenarios where signals are not large.

Except the metrics (FDR, Power, and Pseudo-power), we also concern about two types of delays: (i) the detection delay,
that is, the minimum number of time units that the procedure takes to detect a signal within each alternative period, and
(ii) the return delay, that is, the minimum number of time units it requires to not declare the signal after experiencing
each alternative period. The detection delay is the same as in the literature on sequential change detection, but the return
delay is a new metric to be noticed in this recurrent scheme. We do not concern the average run length to a false alarm,
because we introduce the notion of FDR to characterize the type-I error. In simulations, if there is no detection in the
alternative period, the detection delay are simply set as the length of that specific alternative period plus one; whilst if
there is no return (i.e., declaring no signal) between two alternative periods, the return delay are simply set as the length
of that null period plus one. We record the means of two delays amongst all change periods in each replication for each
procedure.
9
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Table 1
Mean and standard deviation (in parentheses) of empirical FDR, power and pseudo-power (%) across T = 2000 time
points for different π1 with nominal size α = 20% in the setting of multivariate normal distribution. PADD is the
procedure we proposed in Section 2 and its competitors (CUSUM1, CUSUM2, GLR-A, SR-A, GLR-E, SR-E, Shewart) are
introduced in details in Section 5.1.

π1 = 0.2 π1 = 0.1

FDR Power Pseudo-power FDR Power Pseudo-power

Scenario I

PADD 19.9(0.79) 61.5(8.61) 37.7(16.1) 21.6(0.90) 55.2(8.06) 35.8(16.5)
CUSUM1 18.9(2.44) 58.1(10.0) 61.9(17.8) 19.0(2.59) 53.0(9.99) 53.0(16.5)
CUSUM2 18.5(1.57) 37.8(8.84) 59.9(20.6) 18.3(1.62) 34.4(8.15) 47.8(17.9)
GLR-A 19.3(0.42) 67.8(9.48) 55.1(21.9) 19.9(0.55) 60.5(8.91) 51.0(22.0)
SR-A 18.8(0.56) 62.5(9.41) 49.2(21.9) 19.2(0.62) 56.1(8.99) 46.0(21.9)
GLR-E 18.7(0.47) 51.7(8.25) 62.3(22.2) 18.8(0.48) 45.8(8.01) 58.8(22.5)
SR-E 18.8(0.55) 53.0(8.52) 61.7(22.2) 19.1(0.55) 47.3(8.27) 58.4(22.5)
Shewart 17.0(1.63) 0.4(0.13) 0.0(0.06) 17.9(1.69) 0.4(0.12) 0.0(0.05)

Scenario II

PADD 19.3(0.76) 63.0(11.4) 27.4(5.51) 21.3(0.82) 60.3(11.4) 26.4(5.30)
CUSUM1 18.7(2.56) 65.1(11.4) 66.9(12.1) 19.0(2.75) 62.9(11.6) 58.2(11.0)
CUSUM2 18.7(1.43) 54.4(9.72) 66.6(12.6) 19.0(1.59) 51.1(9.66) 51.0(11.1)
GLR-A 18.7(0.45) 65.1(11.3) 53.2(9.78) 19.7(0.66) 63.1(11.5) 49.7(9.35)
SR-A 18.3(0.57) 63.4(11.5) 47.8(8.97) 19.2(0.73) 61.6(11.7) 44.7(8.58)
GLR-E 18.2(0.48) 60.0(12.0) 62.2(11.3) 18.8(0.81) 57.6(12.2) 59.4(11.3)
SR-E 18.4(0.40) 60.2(12.0) 61.4(11.2) 19.1(0.61) 58.0(12.2) 58.7(11.2)
Shewart 16.2(1.47) 1.2(0.43) 0.0(0.07) 17.5(1.57) 1.0(0.33) 0.0(0.05)

Fig. 3. Boxplots of the detection delay and return delay in log-scale based on 500 replications for the PADD, GLR, SR, Shewart, and modified CUSUM
chemes in the setting of multivariate normal distribution.

Fig. 3 summarizes the detection delays and return delays into boxplots. Our PADDmethod is slightly inferior to CUSUMs
n the return delay but provides lower detection delays than CUSUMs. The GLRs provide faster detections but slightly
lower returns than SRs. The PADD outperforms the GLRs and SRs by a significant margin in both scenarios from the
iewpoint of return delay. It is surprising that the PADD performs comparable with or even better than GLRs and SRs
nder these two scenarios in terms of detection delay. This may be partly due to the fact that the statistic T e

i,t is negative
directly after the change-point bi,k with a high probability in this scenario, giving Ti,t (θ ) a ‘‘boost’’ compared to the GLR
statistic (3).

We also test the robust procedures introduced in Sections 4.3 and 5.1. We simulate Zj with the same settings as before
xcept from the standardized multivariate t-distribution with degrees of freedom three. The results on FDR, power, and
seudo power in this setting is listed in Table 2. The results on detection and return delays are shown in Fig. 4. The results
re similar to those in the setting of multivariate normal distribution, so we omit the statements.
10
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Table 2
Mean and standard deviation (in parentheses) of empirical FDR, power and pseudo-power (%) across T = 2000
time points for different π1 with nominal size α = 20% in the setting of multivariate t-distribution. R-PADD and
its competitors (R-GLR-E, R-SR-E, R-GLR-A, R-SR-A) are the robust variant of PADD and competitors introduced in
Section 5.1 with the nonparametric transformation technique in Section 4.3.

π1 = 0.2 π1 = 0.1

FDR Power Pseudo-power FDR Power Pseudo-power

Scenario I

R-PADD 17.9(1.35) 37.0(11.00) 4.3(5.06) 20.9(1.49) 34.0(10.22) 4.4(4.82)
R-GLR-E 17.3(1.40) 37.1(11.1) 17.3(16.9) 19.2(1.61) 34.0(10.3) 16.7(15.9)
R-SR-E 18.9(1.08) 39.7(10.7) 57.3(19.3) 19.7(1.16) 35.5(10.1) 53.7(19.4)
R-GLR-A 16.7(1.28) 42.0(12.7) 9.0(9.35) 18.0(1.24) 38.4(11.7) 8.4(8.44)
R-SR-A 18.6(1.00) 44.0(11.9) 60.7(19.6) 19.4(1.12) 39.5(11.1) 56.5(19.6)

Scenario II

R-PADD 17.6(1.21) 36.3(7.92) 2.7(2.50) 20.9(1.34) 34.1(7.52) 2.7(2.34)
R-GLR-E 17.0(1.03) 37.8(8.86) 18.1(9.63) 19.1(1.10) 34.9(8.29) 16.4(8.66)
R-SR-E 18.4(1.13) 39.4(9.30) 57.3(11.1) 19.6(1.14) 36.1(8.69) 53.3(10.8)
R-GLR-A 16.7(1.18) 41.7(9.33) 7.3(5.68) 18.0(1.21) 39.1(8.90) 6.3(4.49)
R-SR-A 18.1(1.02) 42.3(9.55) 57.3(11.4) 19.2(1.17) 39.5(9.13) 53.5(11.7)

Fig. 4. Boxplots of the detection delay and return delay in log-scale based on 500 replications for the R-PADD, R-GLR and R-SR in the setting of
multivariate t-distribution.

In conclusion, the PADD could provide considerable power as those procedures in literature while reducing the ‘‘false’’
discoveries (i.e., pseudo-power). From the viewpoints of detection/return delay, PADD can keep the ability of fast detection
and have a small return delay. Some additional simulation results, including the case with independent data streams and
the case when α = β = 0.1, are provided in the Supplementary Material. Similar conclusions can be drawn.

5.3. Fund selection

As an illustrative example, we consider the case of an investor selecting skilled funds in the Chinese financial market.
This dataset records all daily net values of the open-end equity funds Yi,t from October 2015 to December 2016 and
consists of a total of 304 daily records (excluding holidays) on m = 1149 funds. The data from the 2015 calendar year, 61
days in total, are used to estimate the parameters, and the rest are used for testing. We compute the logarithmic function
of the returns for each fund: Z̃i,t = log(Yi,t/Yi,t−1). Because fund performance is heavily affected by stock market volatility,
amongst many other factors, we use the median of {Z̃1,t , . . . , Z̃m,t}, denoted as η̂t , and obtain the standardized observation
Z = (Z̃ − η̂ )/σ̂ , where σ̂ 2 is the sample variance computed by the training sample. The main focus of this section is to
i,t i,t t i i
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Fig. 5. (a) Daily net values of two selected funds in the dataset along with the median values of all of the funds; (b) Test statistics of PADD for the
two selected funds along with the threshold value q̂α,t (̂θt ); (c) Boxplot of the yields for the trading strategies based on PADD, GLR-A and CUSUM.

identify the states of funds, µi,t > 0 or not, in model (1). Fig. 5(a) illustrates the original observations of the two selected
funds along with the median values of all of the funds.

We treat the first 30 days of 2016 as a ‘‘warm-up’’ phase, meaning that we only compute the test statistics without
triggering any signals during this period. From the simulations above, GLR-A provides better performance amongst GLRs,
SRs and Shewart. Thus, we apply the PADD with a data-driven choice of the window size as in Section 4.5, GLR-A and
CUSUM (with parameters (ki,Hi) = (0.25, 20)) to identify skill funds in the remaining days with α = 0.2 and β = 0.2. The
results for other choices of α are similar. Fig. 5(b) presents the PADD statistics for the two selected funds considered in
Fig. 5(a) along with the dynamic threshold values. The three methods make 952, 1814 and 1013 discoveries, respectively,
over a total period of 213 days.

The true change-points are unknown, so it is impossible to compare the three methods in terms of their FDR, power,
detection delay, and return delay as in the simulation study. However, we can evaluate their performance from an
investor’s perspective. For simplicity, the trading strategy is known as the ‘‘automatic investment plan’’, in which a
predetermined amount of money is invested daily in funds identified with the testing methods. We hold each selected
fund until the end and compute the average returns. Fig. 5(c) presents the boxplots of the returns for all three methods.
The trading strategy based on the PADD produces more positive returns than that based on the CUSUM, which suggests
that the reference values in the CUSUM may affect its performance to a degree. The PADD also performs better than the
GLR in terms of average yields, whilst its variation is relatively large. This may be partly due to the data-driven choices
of the penalization parameter θ and window size w in our method.

6. Concluding remarks

The proposed PADD framework makes dynamic discoveries for high-dimensional data streams while guaranteeing the
FDR at each time point controlled. Some relevant directions can be considered for future research.

We permit some covariance structures across data streams for the proposed procedure, but as one referee pointed out,
we construct the test statistic for each data stream separately. How to integrate the high-dimensional covariance to make
the existence of covariance a blessing rather than a curse is still a hot topic and some developments made in multiple
testing field [7,41] may be considered as a starting point.

The relaxation on the temporal dependence is challenging, especially in this setting of high-dimensional data streams.
An intuitive idea is to block data temporally. Then, the temporal structure can be retained within each block and the
dependence between blocks are expected to be small, so that the methodology in this article can be borrowed.

Last but not least, in practice, data streams often contain group structures. For example, in fMRI analysis, often, of
interest are the regions of interest, which are the anatomical division of the brain, and each contains a lot of voxels in
fMRI images. Thus, the analysis after grouping is necessary. A direct extension of the proposed procedure to such settings
is to use multivariate GLR and CUSUM to formulate the PADD statistic. But both new theoretical and practical problems
need to be solved in this complex setting.
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ppendix A

We provide the conditions used in the main text, the detailed proofs of Propositions 1, 2, Theorems 1, and 2 in this
ppendix.

.1. Conditions

For notational simplicity, we re-define the empirical processes in (7) as follows:

F̂0;t (q, θ ) = Card(I0;t )−1Vt (q, θ ), F̂1;t (q, θ ) = Card(A1;t )−1S1;t (q, θ ),
F̂2;t (q, θ ) = Card(B1;t )−1S2;t (q, θ ), F̂t (q, θ ) = Card(It )−1Rt (q, θ ).

We require the following technical conditions.

C1 The Σ = (σi1,i2 ) satisfies maxi∈{1,...,p}
∑p

j=1 I(σi,j ̸= 0) = o(mδ), for some δ < 1.
C2 F0;t (q, θ ), F1;t (q, θ ), F2;t (q, θ ), and Ft (q, θ ) are continuously differentiable with respect to q and θ . In addition, their

second-order derivatives with respect to q are uniformly bounded.
C3 Let pα;t (θ ) be the α lower percentile of the true null distribution F0;t (q, θ ). The estimator F̂0;t (pα;t (θ ), θ ) satisfies

the Lipschitz continuity condition with respective to θ as follows: supα∈Q supm |̂F0;t (pα;t (θ ), θ ) − F̂0;t (pα;t (θ ′), θ ′)| ≤

C |θ − θ ′
|, where C is a constant that does not depend on α and m, and Q is the set of rational numbers. Moreover,

F̂1;t (q, θ ), F̂2;t (q, θ ), and F̂t (q, θ ) satisfy the Lipschitz continuity condition.
C4 Assume that ∂Fdrt (q,θ )

∂q

⏐⏐⏐
q=qα;t (θ )

̸= 0 for each θ .

C5 There exists some δ > 0 such that Ft (qα;t (θ ′), θ ′) > Ft (qα;t (θ0;t ), θ0;t ) for θ ′
∈ (θ0;t − δ, θ0;t ).

emark 1. Condition C1 is closely related to its variant assumed under multivariate normal case that the average of the
orrelation coefficients converges to zero at a polynomial rate. Similar conditions are popular in the literature, including
hat in [12]. If the correlation matrix contains many non-zero entries, this condition may not hold; a certain degree
f sparseness of Σ is needed. Under the normality condition, the joint distribution function of (T b

i,t , T
e
i,t ) is continuously

differentiable of all orders. Because Ti,t (θ ) is simply a linear combination of T b
i,t and T e

i,t , F0;t (q, θ ), F
i
1;t (q, θ ) and F i

2;t (q, θ ) are
continuously differentiable of all orders with respect to q and θ . As a result, Condition C2 holds under homoscedasticity
that [bi,k, ei,k] are the same across the data streams, and the signal strength remains constant within and across the
alternative periods. In fact, Condition C2 also holds when the change points and the signal magnitude are sampled from
some prior distributions. Condition C3 is directly borrowed from [8] to verify the uniform consistency of the empirical
processes in (7) with respect to θ . Condition C4 is a technical one to ensure that the true FDR curve is monotone around
the significance level α; see also Theorem 5 of [36]. This condition is weaker than the monotone likelihood ratio condition
in [37]. Condition C5 implies that the overall power function deceases with respect to θ , so that a fixed percentage of
power loss in the penalization method (13) can be achieved. We need this condition to guarantee the almost surely
uniform convergence of the empirical distributions.

We also give a simplified scenario where Condition C2 and C4–C5 can be verified in the following proposition.

Proposition 3. Consider the setting, where [b, e] is the homogeneous change period across data streams in the alternative set.
Assume e−b → ∞, t−e → ∞, and 0 < limt→∞(e−b+1)/(t−b+1) → γ < 1 as t → ∞. In addition, we consider the case
with w ≤ (e − b + 1), λ = +∞ and suppose the change magnitude µ satisfies limt→∞

√
t − b + 1µ/(log logw)1/2 → ∞.

hen, Condition C2 and C4–C5 hold.

ppendix B. Proofs of theorems and propositions

roof of Proposition 1. To prove Proposition 1, we first supply a strong law of large number for weakly dependent data
rom [20].

emma 1. Let {xi}∞i=1 be a sequence of real-valued random variables such that |xi| ≤ 1 and
∑

m≥1
1
mE{

1
m

∑
i≤m xi}2 < ∞.

Then lim 1 ∑ x = 0 almost surely.
m→∞ m i≤m i

13
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As the proofs of (i) and (ii) of Proposition 1 are similar, we only prove (i). We first prove the results under the modified
Condition C1 and normality assumption.

For ease of exposition, we define a function F(.) that inputs the data {Zi,j, j ∈ {t − w, . . . , t}} and outputs the test
statistic Ti,t (θ ), that is

F(Zi,j, j ∈ {t −w, . . . , t}) = T b
i,t − θ × T e

i,t = max
τ∈{0,...,w}

∑t
j=t−τ Zi,j

√
τ + 1

− θ × max
τ∈{0,...,w−1}

∑t−τ−1
j=t−w Zi,j/(w − τ ) −

∑t
j=t−τ Zi,j/(τ + 1)

√
1/(w − τ ) + 1/(τ + 1)

.

The expectation of Card(I0;t )−1Vt (q, θ ) can be derived as

E{Card(I0;t )−1Vt (q, θ )} = Pr{Ti,t (θ ) ≥ q | i ∈ I0;t} = Pr{F(Zi,j, j ∈ {t − w, . . . , t}) ≥ q | i ∈ I0;t} = F0;t (q, θ ).

To apply Lemma 1, we set xi = I(Ti,t (θ ) ≥ q) − F0;t (q, θ ). Then, the conclusion (i) holds if we can show that

Var{m−1
0;tVt (q, θ )} = O(m−δ

0;t ), for some δ > 0, (B.1)

where m0;t = Card(I0;t ). The variance can be further expressed as

Var{m−1
0;tVt (q, θ )} = m−2

0;t

∑
i∈I0;t

Var{I(Ti,t (θ ) ≥ q)} + m−2
0;t

∑
i1 ̸=i2

Cov{I(Ti1,t (θ ) ≥ q), I(Ti2,t (θ ) ≥ q) | i1 ∈ I0;t , i2 ∈ I0;t}.

The variance term is simply bounded by O(m−1
0;t ) due to the fact that Var{I(Ti,t (θ ) ≥ q)} ≤ 1/4. The covariance term can

be expanded as

Cov{I(Ti1,t (θ ) ≥ q), I(Ti2,t (θ ) ≥ q) | i1 ∈ I0;t , i2 ∈ I0;t}

= Pr{Ti1,t (θ ) ≥ q, Ti2,t (θ ) ≥ q | i1 ∈ I0;t , i2 ∈ I0;t} − {F0;t (q, θ )}2.
(B.2)

By the bivariate normality of {Zi1,j, Zi2,j}, we decompose the i1-th and i2-th datastreams within the window [t − w, t] as
Zi1,j =

√
ρi1,i2Cj +

√
1 − ρi1,i2Uj and Zi2,j =

√
ρi1,i2Cj +

√
1 − ρi1,i2Vj, for j ∈ {t − w, . . . , t}; the case that ρi1,i2 ≤ 0 can

be discussed similarly. Here {Uj, Vj, Cj, j ∈ {t − w, . . . , t}} are independent standard normal random variables. Hence, the
first term of (B.2) can be derived as

Pr{Ti1,t (θ ) ≥ q, Ti2,t (θ ) ≥ q | i1 ∈ I0;t , i2 ∈ I0;t}

= Pr{F(Zi1,j, j ∈ {t − w, . . . , t}) ≥ q,F(Zi2,j, j ∈ {t − w, . . . , t}) ≥ q, | i1 ∈ I0;t , i2 ∈ I0;t}

= Pr{F(Uj, j ∈ {t − w, . . . , t}) ≥ q̄(
√

ρi1,i2 ),F(Vj, j ∈ {t − w, . . . , t}) ≥ q̄(
√

ρi1,i2 ) | i1 ∈ I0;t , i2 ∈ I0;t}

=

∫
. . .

∫
{F0;t (q̄(

√
ρi1,i2 ), θ )}

2dCt−w . . . dCt ,

(B.3)

where q̄(√ρi1,i2 ) =
q−

√
ρi1,i2F(Cj,j∈{t−w,...,t})

√
1−ρi1,i2

. Note that when ρi1,i2 → 0, q̄(√ρi1,i2 ) → q and F0;t (q̄(
√

ρi1,i2 ), θ ) → F0;t (q, θ ).

Hence, applying Taylor expansion to F0;t (q̄(
√

ρi1,i2 ), θ ) with respect to √
ρi1,i2 yields that

F0;t (q̄(
√

ρi1,i2 ), θ ) = F0;t (q, θ ) +
∂F0;t
∂ q̄

∂ q̄
∂
√

ρi1,i2

⏐⏐⏐√
ρi1,i2=0

√
ρi1,i2

+
1
2
{
∂2F0;t
∂ q̄2

{
∂ q̄

∂
√

ρi1,i2
}
2
+

∂F0;t
∂ q̄

∂2q̄
∂
√

ρi1,i2
2 }

⏐⏐⏐√
ρi1,i2=0

{
√

ρi1,i2}
2
+ o(|ρi1,i2 |),

here ∂ q̄
∂
√

ρi1,i2

⏐⏐⏐√
ρi1,i2=0

= −F(Cj, j ∈ {t − w, . . . , t}) and ∂2 q̄
∂
√

ρi1,i2
2

⏐⏐⏐√
ρi1,i2=0

= q. By the fact that
∫

. . .
∫
F(Cj, j ∈

t − w, . . . , t})dCt−w . . . dCt = 0, the term in (B.3) can be bounded by

{F0;t (q, θ )}2+{
∂F0;t
∂ q̄

}
2
⏐⏐⏐√

ρi1,i2=0
×Moment2×|ρi1,i2 |+F0;t (q, θ )×{

∂2F0;t
∂ q̄2

×Moment2+
∂F0;t
∂ q̄

×q}
⏐⏐⏐√

ρi1,i2=0
|ρi1,i2 |+o(|ρi1,i2 |),

(B.4)

here Moment2 =
∫

. . .
∫
{F(Cj, j ∈ {t − w, . . . , t})}2dCt−w . . . dCt is the second moment of F(Cj, j ∈ {t − w, . . . , t}).

y Condition C2, the coefficients in (B.4) are bounded and the bound does not depend on i1 and i2. Consequently, the
ovariance in (B.2) is bounded by O(|ρi1,i2 |). This together with the modified Condition C1 implies that (B.1) is satisfied.
he proof of (i) is completed.
Without normality assumption, it is easy to verify that (B.1) holds under Condition C1. □

roof of Theorem 1. Before we prove Theorem 1, we strengthen the conclusion in Proposition 1 as in the following
emma.
14
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emma 2. Suppose the conditions in Proposition 1 and conditions C1–C3 in the Appendix hold. Then,

sup
q

sup
0≤θ≤θ̄

|̂F0;t (q, θ ) − F0;t (q, θ )|
a.s.

−→ 0, sup
q

sup
0≤θ≤θ̄

|̂F1;t (q, θ ) − F1;t (q, θ )|
a.s.

−→ 0,

sup
q

sup
0≤θ≤θ̄

|̂F2;t (q, θ ) − F2;t (q, θ )|
a.s.

−→ 0, sup
q

sup
0≤θ≤θ̄

|̂Ft (q, θ ) − Ft (q, θ )|
a.s.

−→ 0,

here 0 < θ̄ < ∞.

roof. Without loss of generality, let θ̄ = 1. We extend the standard techniques used in Clivenko–Cantelli theorem [10]
o prove this lemma. Let qj/k(θ ) be the j/k-th lower percentile of F0;t (q, θ ), for j ∈ {0, . . . , k}. We further partition the
omain of θ into L equally lengths of intervals ∪

L
ℓ=1[θℓ−1, θℓ] such that |θℓ−1 − θℓ| ≤ 1/Ck, where C is the constant in

ondition C3. By Proposition 1, there exists a sufficiently large mk such that when m > mk,⏐⏐̂F0;t (qj/k(θℓ), θℓ) − F0;t (qj/k(θℓ), θℓ)
⏐⏐ < 1/k,

or j ∈ {0, . . . , k} and ℓ ∈ {0, . . . , L}. Then for any pair of value (q, θ ) ∈ [q(j−1)/k(θ ), qj/k(θ )] × [θℓ−1, θℓ], F̂0;t (q, θ ) can be
pper bounded by

F̂0;t (q, θ ) ≤ F̂0;t (qj/k(θ ), θ ) ≤ F̂0;t (qj/k(θℓ−1), θℓ−1) + 1/k ≤ F0;t (qj/k(θℓ−1), θℓ−1) + 2/k
= F0;t (q(j−1)/k(θℓ−1), θℓ−1) + 3/k = F0;t (q(j−1)/k(θ ), θ ) + 3/k ≤ F0;t (q, θ ) + 3/k.

imilarly, we can have F̂0;t (q, θ ) ≥ F0;t (q, θ ) − 3/k. Hence, supq supθ |̂F0;t (q, θ ) − F0;t (q, θ )| ≤ 3/k when m > mk. This
hows that F̂0;t (q, θ ) uniformly converges to F0;t (q, θ ) almost surely. Similar results for F̂1;t (q, θ ), F̂2;t (q, θ ), and F̂t (q, θ )
an be obtained. □

Now we use Lemma 2 to prove Theorem 1. Some calculations yield that

lim
m→∞

inf
q≤q̄

inf
0≤θ≤θ̄

{
F̂DRλ;t (q, θ ) − FDPt (q, θ )

}
≥ lim

m→∞
inf
q≤q̄

inf
0≤θ≤θ̄

{
F̂DRλ;t (q, θ ) −

mπ0;tF0;t (q, θ )
Rt (q, θ ) ∨ 1

}
− lim

m→∞
sup
q≤q̄

sup
0≤θ≤θ̄

⏐⏐⏐mπ0;tF0;t (q, θ )
Rt (q, θ ) ∨ 1

− FDPt (q, θ )
⏐⏐⏐. (B.5)

y Lemma 2, we have limm inf0≤θ≤θ̄ {π̂0;t (λ, θ ) − π0;t} ≥ 0 almost surely. Hence, the first term in (B.5) is nonnegative
symptotically. The second term can be derived as

lim
m→∞

sup
q≤q̄

sup
0≤θ≤θ̄

⏐⏐⏐mπ0;tF0;t (q, θ )
Rt (q, θ ) ∨ 1

−
Vt (q, θ )

Rt (q, θ ) ∨ 1

⏐⏐⏐ ≤ lim
m→∞

sup
0≤θ≤θ̄

m
Rt (q̄, θ )

× lim
m→∞

sup
q≤q̄

sup
0≤θ≤θ̄

⏐⏐⏐Vt (q, θ )/m − π0;tF0;t (q, θ )
⏐⏐⏐

=
1

inf0≤θ≤θ̄ Ft (q̄, θ )
× lim

m→∞
sup
q≤q̄

sup
0≤θ≤θ̄

⏐⏐⏐Vt (q, θ )/m − π0;tF0;t (q, θ )
⏐⏐⏐.

y normality assumption, F0;t (q, θ ) is continuously differentiable of all orders with respect to q and θ , implying that
nf0≤θ≤θ̄ F0;t (q̄, θ ) > 0. Therefore,

inf
0≤θ≤θ̄

Ft (q̄, θ ) ≥ inf
0≤θ≤θ̄

π0;tF0;t (q̄, θ ) > 0. (B.6)

ccording to Lemma 2, the second term converges to zero uniformly for q and θ . Combining the above results, (B.5) is
onnegative asymptotically. To prove (14), it suffices to show that

lim
m→∞

sup
q≤q̄

sup
0≤θ≤θ̄

⏐⏐⏐FDPt (q, θ ) − FDRt (q, θ )
⏐⏐⏐ = 0 a.s. (B.7)

B.7) holds if we can verify the following two convergence results, that is,

lim
m→∞

sup
q≤q̄

sup
0≤θ≤θ̄

⏐⏐⏐FDPt (q, θ ) − Fdrt (q, θ )
⏐⏐⏐ = 0 a.s., lim

m→∞
sup
q≤q̄

sup
0≤θ≤θ̄

⏐⏐⏐Fdrt (q, θ ) − FDRt (q, θ )
⏐⏐⏐ = 0 a.s.

he proof of 2 can be derived in a similar way as in [36]. The proof of Theorem 1 is hence completed. □

roof of Proposition 2. We first provide the following lemma regarding the consistency of the data-driven threshold
α;t (θ ).

emma 3. Assume Conditions C1–C4 hold. Then, we have

sup
⏐⏐̂qα;t (θ ) − qα;t (θ )

⏐⏐ a.s.
−→ 0.
0≤θ≤θ̄

15
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roof. For any fixed δ1 > 0, let q̌(θ ) be any curve that q̌(θ ) < qα;t (θ )− δ1. Then, F̂DRλ;t (q̌(θ ), θ ) can be lower bounded by

mπ̂0;t (λ, θ )F0;t (q̌(θ ), θ )
Rt (q̌(θ ), θ ) ∨ 1

≥
k(θ )π0;tF0;t (q̌(θ ), θ ) − |π̂0;t (λ, θ ) − k(θ )π0;t |F0;t (q̌(θ ), θ )

Ft (q̌(θ ), θ ) + |Rt (q̌(θ ), θ )/m − Ft (q̌(θ ), θ )|

=
k(θ )π0;tF0;t (q̌(θ ), θ )/Ft (q̌(θ ), θ ) − |π̂0;t (λ, θ ) − k(θ )π0;t |F0;t (q̌(θ ), θ )/Ft (q̌(θ ), θ )

1 + |Rt (q̌(θ ), θ )/m − Ft (q̌(θ ), θ )|/Ft (q̌(θ ), θ )

≥
k(θ )π0;tF0;t (q̌(θ ), θ )/Ft (q̌(θ ), θ ) − ϵ1

1 + ϵ2
=

k(θ )Fdrt (q̌(θ ), θ ) − ϵ1

1 + ϵ2
,

where

ϵ1 = sup
q≤qα;t (θ )−δ1

sup
0≤θ≤θ̄

|π̂0;t (λ, θ ) − k(θ )π0;t |F0;t (q, θ )/Ft (q, θ ),

ϵ2 = sup
q≤qα;t (θ )−δ1

sup
0≤θ≤θ̄

|Rt (q, θ )/m − Ft (q, θ )|/Ft (q, θ ).

By (10), Condition C2, and implicit function theorem, qα;t (θ ) is continuously differentiable with respect to θ . Moreover,
it simply holds that qα;t (θ ) < ∞ for each θ ; otherwise the true FDR cannot be achieved at α level. As a result,
sup0≤θ≤θ̄ qα;t (θ ) < ∞. This together with Lemma 2 and (B.6) yields that ϵ1

a.s.
−→ 0 and ϵ2

a.s.
−→ 0. Note that for each θ ,

k(θ )Fdrt (q̌(θ ), θ ) > α; otherwise it contradicts the fact that qα;t (θ ) is the infimum in the definition of (10). By Condition C2,
one can have inf0≤θ≤θ̄ k(θ )Fdrt (q̌(θ ), θ ) > α. Hence, for a sufficiently large M1(δ1), when m > M1(δ1), it follows that
inf0≤θ≤θ̄ F̂DRλ;t (q̌(θ ), θ ) > α almost surely. This implies that q̂α;t (θ ) ≥ qα;t (θ ) − δ1 for all θ .

We now prove a similar inequality on the other side. By Condition C2, the partial derivative

s(q, θ ) =
∂Fdrt (q, θ )

∂q

is continuously differentiable with respect to q and θ . It follows that s(qα;t (θ ), θ ) must be negative according to
ondition C4; otherwise, qα;t (θ ) cannot be the true infimum for all q that k(θ )Fdrt (q, θ ) ≤ α. By continuity, there exists
sufficiently small δ1 > 0 such that inf|q−qα;t (θ )|≤δ1 inf0≤θ≤θ̄ |s(q, θ )| > 0. For q̃(θ ) ∈ [qα;t (θ ) + δ1/2, qα;t (θ ) + δ1], Taylor
xpansion leads to

k(θ )Fdrt (q̃(θ ), θ ) = k(θ )Fdrt (qα;t (θ ), θ ) + {q̃(θ ) − qα;t (θ )}k(θ )s(q′, θ ) ≤ α − δ1/2 inf
|q−qα;t (θ )|≤δ1

inf
0≤θ≤θ̄

{k(θ )|s(q, θ )|} < α.

onsequently, F̂DRλ;t (q̃(θ ), θ ) is upper bounded as

F̂DRλ;t (q̃(θ ), θ ) =
π̂0;t (λ, θ )F0;t (q̃(θ ), θ )
{Rt (q̃(θ ), θ ) ∨ 1}/m

≤
k(θ )π0;tF0;t (q̃(θ ), θ ) + |π̂0;t (λ, θ ) − k(θ )π0;t |F0;t (q̃(θ ), θ )

Ft (q̃(θ ), θ ) − |Rt (q̃(θ ), θ )/m − Ft (q̃(θ ), θ )|

=
k(θ )Fdrt (q̃(θ ), θ ) + ϵ3

1 − ϵ4
<

α + ϵ3

1 − ϵ4
,

where

ϵ3 = sup
q≤qα (θ )+δ1

sup
0≤θ≤θ̄

|π̂0;t (λ, θ ) − k(θ )π0;t |F0;t (q, θ )/Ft (q, θ ),

ϵ4 = sup
q≤qα (θ )+δ1

sup
0≤θ≤θ̄

|Rt (q, θ )/m − Ft (q, θ )|/Ft (q, θ ).

nalogously, one can show that ϵ3
a.s.

−→ 0 and ϵ4
a.s.

−→ 0. As a result, there exists a sufficiently large M2(δ1) such
hat when m > M2(δ1), sup0≤θ≤θ̄ F̂DRλ;t (q̃(θ ), θ ) < α for q̃(θ ) ∈ [qα;t (θ ) + δ1/2, qα;t (θ ) + δ1]. By the selection rule
f q̂α;t (θ ), q̂α;t (θ ) < qα;t (θ ) + δ1 for all θ when m > M2(δ1). Combining this and the previous result, we obtain that
up0≤θ≤θ̄ |̂qα;t (θ ) − qα;t (θ )|

a.s.
−→ 0. □

Now we proceed to prove Proposition 2. We first show that F̂t (̂qα;t (θ ), θ ) converges to Ft (qα;t (θ ), θ ) almost surely.
ased on Condition C2 and the results from Proposition 1, and Lemma 3, we have

|̂Ft (̂qα;t (θ ), θ ) − Ft (qα;t (θ ), θ )| ≤ |̂Ft (̂qα;t (θ ), θ ) − Ft (̂qα;t (θ ), θ )| + |Ft (̂qα;t (θ ), θ ) − Ft (qα;t (θ ), θ )|

≤ sup
q

|̂Ft (q, θ ) − Ft (q, θ )| + O(|̂qα;t (θ ) − qα;t (θ )|)
a.s.

−→ 0. (B.8)

he consistency of θ̂t can be obtained by (B.8) and Theorem 5 in [36] as follows. By definition of θ0;t , for each θ ′ > θ0;t ,
here exists some ε > 0 such that Ft (qα;t (θ ′), θ ′)/Ft (qα;t (0), 0) = 1 − β − ε. Thus, by (B.8), we can take m sufficient large
hat ⏐⏐̂F (̂q (θ ′), θ ′)/̂F (̂q (0), 0) − F (q (θ ′), θ ′)/F (q (0), 0)

⏐⏐ < ε/2,
t α;t t α;t t α;t t α;t
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a

D

P

nd thus F̂t (̂qα;t (θ ′), θ ′)/̂Ft (̂qα;t (0), 0) < 1 − β eventually with probability one. Hence, lim supm→∞ θ̂t ≤ θ0;t almost
surely. By Condition C5, there is a neighborhood of size δ > 0, such that, for θ ′

∈ [θ0;t − δ, θ0;t ), we have
Ft (qα;t (θ ′), θ ′)/Ft (qα;t (0), 0) > Ft (qα;t (θ0;t ), θ0;t )/Ft (qα;t (0), 0). By a similar argument to that for the previous one, we
have that, for any θ ′ in this neighborhood, F̂t (̂qα;t (θ ′), θ ′)/̂Ft (̂qα;t (0), 0) > 1 − β eventually with probability one. Thus
lim infm→∞ θ̂t ≥ θ0;t almost surly. Putting these together, we have the results. □

Proof of Theorem 2. To justify Theorem 2, we provide Lemma 4.

Lemma 4. Under Conditions C1–C5, we have for any q,

lim
m→∞

|̂F0;t (q, θ̂t ) − F0;t (q, θ0;t )|
a.s.

−→ 0, lim
m→∞

|̂Ft (q, θ̂t ) − Ft (q, θ0;t )|
a.s.

−→ 0.

Proof. We prove the consistency of F̂0;t (q, θ̂t ), while the result for F̂t (q, θ̂t ) is similar. By derivation,

|̂F0;t (q, θ̂t ) − F0;t (q, θ0;t )| ≤ |̂F0;t (q, θ̂t ) − F0;t (q, θ̂t )| + |F0;t (q, θ̂t ) − F0;t (q, θ0;t )|.

According to Proposition 2 and Condition C2, the second term is asymptotically negligible. For the first term, it is
upper bounded by sup0≤θ≤θ̄ |̂F0;t (q, θ ) − F0;t (q, θ )|, which converges to zero by Lemma 2. This completes the proof of
Lemma 4. □

Now we prove Theorem 2. By Lemma 4, F̂DRλ;t (q, θ̂t ) converges to k(θ )Fdrt (q, θ0;t ) almost surely. By Condition C2,
There exists a q′ < ∞, such that ε = α − k(θ )Fdrt (q′, θ0;t ) > 0. We can take a sufficiently large m such
that |F̂DRλ;t (q′, θ̂t ) − k(θ )Fdrt (q′, θ0;t )| ≤ ε/2, which implies that F̂DRλ;t (q′, θ̂t ) < α and q̂α;t (̂θt ) < q′. Therefore,
lim supm→∞ q̂α;t (̂θt ) ≤ q′ with probability one. By Theorem 1, we have

lim inf
m→∞

[
F̂DRλ;t (̂qα;t (̂θt ), θ̂t ) − FDPt (̂qα;t (̂θt ), θ̂t )

]
≥ lim

m→∞
inf

q≤2q′
inf

0≤θ≤3

[
F̂DRλ;t (q, θ ) − FDPt (q, θ )

]
≥ 0.

As F̂DRλ;t (̂qα;t (̂θt )) ≤ α, it follows that lim supm→∞ FDPt (̂qα;t (̂θt ), θ̂t ) ≤ α with probability one. By Fatou’s lemma,

lim sup
m→∞

E
{
FDPt (̂qα;t (̂θt ), θ̂t )

}
≤ E

{
lim sup
m→∞

FDPt (̂qα;t (̂θt ), θ̂t )
}

≤ α.

This completes the proof of Theorem 2. □

Derivation of ∆(θ ) in (15):

∆(θ ) =
∂

∂θ

{
F0;t (qα;t (θ ), θ )

}⏐⏐⏐
θ=0

×
θ

F0;t (qα;t (0), 0)
=

[{∂F0;t (q, θ )
∂q

∂qα;t (θ )
∂θ

+
∂F0;t (q, θ )

∂θ

}⏐⏐⏐
q=qα;t (θ )

]⏐⏐⏐
θ=0

×
θ

F0;t (qα;t (0), 0)
.

(B.9)

erivation similar to (A.6) in [8] yields that

∂qα;t (θ )
∂θ

=

{
β ′ ∂F0;t (q,θ )

∂θ
−

∂F2;t (q,θ )
∂θ

∂F2;t (q,θ )
∂q − β ′

∂F0;t (q,θ )
∂q

}⏐⏐⏐⏐
q=qα;t (θ )

. (B.10)

lugging (B.10) into (B.9), ∆(θ ) can be expressed explicitly as

∆(θ ) =

[{
∂F0;t (q,θ )

∂θ

∂F2;t (q,θ )
∂q −

∂F0;t (t,θ )
∂q

∂F2;t (q,θ )
∂θ

}⏐⏐⏐
q=qα;t (θ )

]⏐⏐⏐
θ=0[{

∂F2;t (q,θ )
∂q − β ′

∂F0;t (q,θ )
∂q

}⏐⏐⏐
q=qα;t (θ )

]⏐⏐⏐
θ=0

×
θ

F0;t (qα;t (0), 0)
.

By a modification of Theorem 1.3.1 in [6], we have the asymptotic null distribution of T b
i,t

lim
m→∞

Pr
{
A(logw)T b

i,t ≤ q + D(logw)
}

= exp(−e−q)

for any q, where A(x) = (2 log x)1/2, D(x) = 2 log x + 1/2 log log x − 1/2 logπ . By Theorem A.2.4.2 in [6], we have
T e
i,t/{A(logw)} → 1 in probability. Thus, the F0;t (q, θ ) with small θ can be approximated as

1 − exp
[
−e−

{
A(logw)q+θA2(logw)−D(logw)

}]
. (B.11)

By Lemma 1.5.1 in [6], we can verify that under the alternative hypothesis B1;t ,

T b
−

√
t − b + 1

√
γµ

L
−→ N(0, 1), T e

−
√
t − b + 1

√
γ (1 − γ )µ

L
−→ N(0, 1).
i,t i,t
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A

T
θ

P
F

T

ccordingly, T e
i,t =

√
t − b + 1

√
γ (1 − γ )µ{1 + op(1)} by the condition that

lim
t→∞

√
t − b + 1µ/(log logw)1/2 → ∞.

Hence, the F2;t (q, θ ) with a small value of θ can be approximated as

1 − Φ

[{
θ
√

γ (1 − γ ) −
√

γ

}√
t − b + 1µ + q

]
. (B.12)

he result in (15) can be immediately obtained by taking partial derivatives of (B.11) and (B.12) with respect to q and
. □

roof of Proposition 3. Since the considered setting is the same as that for power analysis, we have, by (B.11) and (B.12),
1;t (q, θ ) = 0 and

Ft (q, θ ) = 1 − π0;t exp
[
−e−

{
A(logw)q+θA2(logw)−D(logw)

}]
− π12;tΦ

[{
θ
√

γ (1 − γ ) −
√

γ

}√
t − b + 1µ + q

]
.

Thus, Condition C2 is easy to verify by taking derivative. Also, by calculations, we have

∂Fdrt (q, θ )
∂q

=
π0;tπ12;t

{Ft (q, θ )}2

{
∂F0;t (q, θ )

∂q
F2;t (q, θ ) − F0;t

∂F2;t (q, θ )
∂q

}
=

π0;tπ12;t

{Ft (q, θ )}2

(
φ

[{
θ
√

γ (1 − γ ) −
√

γ

}√
t − b + 1µ + q

]
F0;t (q, θ )

−{1 − F0;t (q, θ )}e
−

{
A(logw)q+θA2(logw)−D(logw)

}
A(logw)F12;t (q, θ )

)
̸= 0.

hus, Condition C4 is verified. For small θ , ∂Fdrt (q, θ )/∂q < 0, and we calculate

∂F0;t (qα;t (θ ), θ )
∂θ

= −{1 − F0;t (q, θ )} exp
[
−
{
A(logw)q + θA2(logw) − D(logw)

}] {
A(logw)

∂qα;t (θ )
∂θ

+ A2(logw)
}

,

∂F12;t (qα;t (θ ), θ )
∂θ

= −φ

[{
θ
√

γ (1 − γ ) −
√

γ

}√
t − b + 1µ + q

] {√
γ (1 − γ )

√
t − b + 1µ +

∂qα;t (θ )
∂θ

}
.

By the definition of (10), λ = +∞ and ∂Fdrt (q, θ )/∂q < 0, we can get ∂qα;t (θ )/∂θ > 0. Therefore, Condition C5 is
verified. □

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2023.105224.
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