
Biometrika (2023), pp. 1–18
Printed in Great Britain

Supplementary material for “Semi-supervised distribution
learning”

The supplementary material contains all technical proofs, applications including the semi-
supervised conformal p-values and local distributional treatment effects, additional numerical
studies with more complex settings, and real data analysis. Codes for the proposed methods and 5

numerical studies can be found on GitHub (https://github.com/mtwen/BASD).

S1. PROOFS

S1.1. Lemmas
LEMMA S1 (A BERNSTEIN-TYPE INEQUALITY FOR BOUNDED PROCESSES). Let T be an

index set admitting a countable separant S. Let Xi = (Xi,s)s∈T (i = 1, . . . , n) be independent 10

(not necessarily identically distributed) real-valued random variables. Assume that E(Xi,s) = 0,
and |Xi,s| ≤ 1 for all s ∈ T and i = 1, . . . , n. Let Z = sups∈T

∑n
i=1Xi,s and let the weak

variance Σ2 and the wimpy variance σ2 be defined as Σ2 = E(sups∈T
∑n

i=1X
2
i,s) and σ2 =

sups∈T
∑n

i=1E(X2
i,s). Then,

var(Z) ≤ Σ2 + σ2 ≤ 8E(Z) + 2σ2. (S1) 15

For t ≥ 0,

pr{Z ≥ E(Z) + t} ≤ exp

(
− t2

2{2(Σ2 + σ2) + t}

)
.

Proof of Lemma S1. See Boucheron et al. (2013), Theorem 11.8 and 12.2. □
LEMMA S2 (LEMMA S1 OF ZHANG & BRADIC (2022)). Let {Xn} and {Yn} be a se-

quence of random vectors. If for any ϵ > 0, pr(∥Xn∥ > ϵ | Yn) = op(1), then pr(∥Xn∥ > ϵ) → 20

0. In particular, this occurs if E(∥Xn∥q | Yn) = op(1) for any q ≥ 1, by Chebyshev’s inequality.

S1.2. Proofs of Theorem 1
We first introduce some notations. Recall γn = m(n+m)−1 and Pf =

∫
fdP for a prob-

ability measure P . For a function class F , the uniform norm for a map z : F 7→ R is defined
as ∥z∥F = supf∈F |z(f)|, and J[ ](δ,F , ∥ · ∥) =

∫ δ
0 {1 + logN[ ](ε,F , ∥ · ∥)}1/2dϵ is the brack- 25

eting integral. Let Pn = n−1
∑n

i=1 δ(Xi,Yi) and Pm = m−1
∑n+m

i=n+1 δXi be the empirical prob-
ability measures in labeled and unlabeled data, respectively, where δZ is the Dirac probability
measure at the point Z. Let uk(y|Xi) = F̂k(y|Xi)− F0(y|Xi) for convenience.
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Now, by arranging terms of F̂basd(y) (3), we have

n1/2{F̂basd(y)− F (y)} = n1/2
{
F̂basd,0(y)− F (y)

}
+ γnK

−1/2
K∑
k=1

−n
−1/2
K

∑
i∈Ik

{uk(y|Xi)− EX(uk(y|X))}

+(n/m)1/2m
−1/2
K

∑
i∈Jk

{uk(y|Xi)− EX(uk(y|X))}

 ,

(S2)

where F̂basd,0 is defined as (1) with the non-random function F0(y|x), that is,30

F̂basd,0(y) =
1

n+m

n+m∑
i=1

F0(y|Xi) +
1

n

n∑
i=1

{1y(Yi)− F0(y|Xi)} . (S3)

We first show some properties of F̂basd,0, including the exponential tail bound (Lemma S3)
and uniform weak convergence (Lemma S4).

LEMMA S3. Suppose that the measurable function class G = {F0(y|X) : y ∈ R} satisfies
that, for some η ∈ (0, 2), logN[ ](ϵ,G, L2(PX)) ≲ ϵ−η for every ϵ > 0. Then, there exist some
constants C0, c0 > 0 such that35

pr

[
sup
y∈R

∣∣∣n1/2
{
F̂basd,0(y)− F (y)

}∣∣∣ ≥ σ(G)δ

]
≤ C0 exp(−c0δ

2),

where σ(G) is defined in Theorem 1.
Proof of Lemma S3. Let Fn(y) = n1/2{F̂basd,0(y)− F (y)} for convenience. By calculations,

we have

Fn(y) = n−1/2
n∑

i=1

({1y(Yi)− γnF0(y|Xi)} − [F (y)− γnE{F0(y|X)}])

+ n−1/2
n+m∑
i=n+1

(1− γn) [F0(y|Xi)− E{F0(y|X)}] ,
(S4)

which implies that Fn(y) consists of independent sums.
We first establish the upper bound of E{supy∈R |Fn(y)|}. We define the function class F1 =40

{1y(Y )− γnF0(y|X) : y ∈ R}. Then, we have

E

{
sup
y∈R

|Fn(y)|

}
≤ E

{
∥n1/2(Pn − P )∥F1

}
+ {γn(1− γn)}1/2E

{
∥m1/2(Pm − P )∥G

}
.

(S5)

By the assumption on G, we have logN[ ](ϵ,G, L2(PX)) ≲ ϵ−η for every ϵ > 0 and some η ∈
(0, 2), and further J[ ](δ,G, L2(P )) ≲ δ1−η/2. It is well known that the bracketing number of
{1y(Y ) : y ∈ R} satisfies N[ ](ϵ, {1y(Y ) : y ∈ R}, L2(P )) ≲ ϵ−2. Thus, for ϵ ∈ (0, 1),

logN[ ](ϵ,F1, L2(P )) ≲ ϵ−η + 2 log(1/ϵ), (S6)
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and thus J[ ](δ,F1, L2(P )) ≲ δ1−η/2. By Lemma 3.4.2 of van der Vaart & Wellner (1996), we 45

have

E{∥n1/2(Pn − P )∥F1} ≲ J[ ](1,F1, L2(P ))
(
1 + n−1/2J[ ](1,F1, L2(P ))

)
≲ 1,

E{∥m1/2(Pm − P )∥G} ≲ J[ ](1,G, L2(P ))
(
1 +m−1/2J[ ](1,G, L2(P ))

)
≲ 1.

Together with (S5), there exists a constant c1 such that E{supy∈R |Fn(y)|} ≤ c1.
We now prove the conclusion of this lemma. We have

|Fn(y)| ≤ 2n1/2 +mn1/2/(n+m) ≤ 3n1/2,

where the first inequality holds by 0 ≤ F0(y|X) ≤ 1 and |1y(Yi)− γnF0(y|Xi)| ≤ 1. Then,
for δ > 3n1/2/σ(G), pr{supy∈R |Fn(y)| ≥ σ(G)δ} = 0. For 2c1/σ(G) ≤ δ ≤ 3n1/2/σ(G), we 50

have σ(G)δ − E{supy∈R |Fn(y)|} > 0 due to E{supy∈R |Fn(y)|} ≤ c1. Thus, letting t =

n1/2σ(G)δ/2− n1/2E{supy∈R |Fn(y)|}/2, with Lemma S1,

pr

{
sup
y∈R

|Fn(y)| ≥ σ(G)δ

}
≤ 2pr

[
sup
y∈R

{
n1/2Fn(y)/2

}
− E

[
sup
y∈R

{
n1/2Fn(y)/2

}]
≥ t

]

≤ 2 exp

{
− t2

4(Σ2 + σ2) + 2t

}
,

where σ2 = nσ2(G)/4 is the wimpy variance, and Σ2 is the weak variance satisfying

Σ2 ≤ 4n1/2E

{
sup
y∈R

|Fn(y)|

}
+ nσ2(G)/4 ≤ 4c1n

1/2 + nσ2(G)/4

by (S1). So,

pr

{
sup
y∈R

|Fn(y)| ≥ σ(G)δ

}
≤ 2 exp

{
− t2

2nσ2(G) + 16c1n1/2 + 2t

}
≤ C2 exp

(
−c2δ

2
)
,

where the last inequality holds by n1/2σ(G)δ/4 ≤ t ≤ 3n/2 for some constants C2, c2 > 0. For 55

0 < δ < 2c1/σ(G), pr{supy∈R |Fn(y)| ≥ σ(G)δ} ≤ C3 exp(−c3δ
2) holds for some constants

C3, c3 > 0. Thus, the conclusion follows for some universal constants C0, c0 > 0. □
LEMMA S4. Suppose that the measurable function class G = {F0(y|X) : y ∈ R} satisfies

that, for some η ∈ (0, 2), logN[ ](ϵ,G, L2(PX)) ≲ ϵ−η for every ϵ > 0. Assuming γn → γ ∈
[0, 1], we have 60

n1/2{F̂basd,0(y)− F (y)}⇝ F(y;G),

uniformly for y ∈ R as n,m → ∞, where F(y;G) = (1− γ)1/2B1 ◦ 1y(Y ) + γ1/2B2 ◦
{1y(Y )− F0(y|X)}, and B1,B2 are two independent Brownian bridges.

Proof of Lemma S4. Recall from (S4) that we decompose Fn into two independent parts:

Fn(y) = n1/2(Pn − P ) {1y(Y )− γnF0(y|X)}+ {γn(1− γn)}1/2{m1/2(Pm − P )F0(y|X)}.

We define F1 = {1y(Y )− γnF0(y|X) : y ∈ R} as in Lemma S3. By the assumption on G and
(S6), both F1 and G are Donsker. Then, by the independence of Pn and Pm, we have 65(

n1/2(Pn − P ) {1y(Y )− γnF0(y|X)} ,m1/2(Pm − P )F0(y|X)
)T

⇝ (B1 ◦ {1y(Y )− γF0(y|X)},B2 ◦ {F0(y|X)})T ,
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uniformly for y ∈ R. By the continuous mapping theorem, we have uniformly for y ∈ R,

Fn(y)⇝ B1 ◦ {1y(Y )− γF0(y|X)}+ {γ(1− γ)}1/2B2 ◦ {F0(y|X)}
∼d(1− γ)1/2B1 ◦ 1y(Y ) + γ1/2B2 ◦ {1y(Y )− F0(y|X)}.

The conclusion follows. □
Now, we turn back to the proof of Theorem 1. Recall the decomposition of F̂basd in (S2).

For the uniform exponential tail bound, the rest is to derive the exponential tail bound for
n
1/2
K (Pn,k − PX)uk(y|X) and m

1/2
K (Pm,k − PX)uk(y|X) conditional on L−k, where Pn,k =70

nK
−1
∑

i∈Ik δXi and Pm,k = m−1
K

∑
i∈Jk

δXi are the empirical probability measures in the
kth folds of labeled and unlabeled data, respectively. We define the function class F2,k =
{uk(y|X) : y ∈ R}. By Assumption 2 and the definition of bracketing numbers, we have
logN[ ](ϵ,F2,k, L2(PX)) ≲ ϵ−η for every ϵ > 0 and some η ∈ (0, 2). Then, by Theorem 2.14.2
of van der Vaart & Wellner (1996), denoting ϱ2n,k = EX{Uk(X)}2, we have75

EX

[
∥n1/2

K (Pn,k − PX)∥F2,k

]
≲ ϱn,k

∫ 1

0

{
1 + logN[ ](ϵϱn,k,F2,k, L2(PX))

}
dϵ

≲ ϱ
1−η/2
n,k

∫ 1

0
ϵ−η/2dϵ ≤ (1− η/2)−1ϱ1−η/2

n .

(S7)

We have EX [∥m1/2
K (Pm,k − PX)∥F2,k

] ≲ (1− η/2)−1ϱ
1−η/2
n similarly. Similar to the proof of

Lemma S3, with Lemma S1, there exist constants Ck, ck > 0 such that for δ ∈ (0, 2n
1/2
k ϱ

(2−η)/4
n ]

pr

{
sup
y∈R

∣∣∣n1/2
K (Pn,k − PX)uk(y|X)

∣∣∣ ≥ ϱ(2−η)/4
n δ | L−k

}
≤ Ck exp

(
−ckδ

2
)
,

and

pr

{
sup
y∈R

∣∣∣m1/2
K (Pm,k − PX)uk(y|X)

∣∣∣ ≥ ϱ(2−η)/4
n δ | L−k

}
≤ Ck exp

(
−ckδ

2
)
.

Then,

pr

[
sup
y∈R

∣∣∣−n
1/2
K (Pn,k − PX)uk(y|X) + (n/m)1/2m

1/2
K (Pm,k − PX)uk(y|X)

∣∣∣ ≥ {1 + (n/m)1/2
}
ϱ(2−η)/4
n δ

]

≤ E

[
pr

{
sup
y∈R

∣∣∣n1/2
K (Pn,k − PX)uk(y|X)

∣∣∣ ≥ ϱ(2−η)/4
n δ | L−k

}]

+ E

[
pr

{
sup
y∈R

∣∣∣m1/2
K (Pm,k − PX)uk(y|X)

∣∣∣ ≥ ϱ(2−η)/4
n δ | L−k

}]
≤ 4Ck exp

(
−ckδ

2
)
.

(S8)

Thus, together with (S2) and Lemma S3, we have80

pr

[
sup
y∈R

∣∣∣n1/2
{
F̂basd(y)− F (y)

}∣∣∣ ≥ σ(G)δ +K1/2γn

{
1 + (n/m)1/2

}
ϱ(2−η)/4
n δ

]
≤ C exp(−cδ2),

for some constants C, c > 0. The conclusion (4) in the theorem holds.
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Next, we show the uniform weak convergence of F̂basd(y). By Lemma S4, we have

n1/2
{
F̂basd,0(y)− F (y)

}
⇝ (1− γ)1/2B1 ◦ 1y(Y ) + γ1/2B2 ◦ {1y(Y )− F0(y|X)},

uniformly for y ∈ R, where B1 and B2 are two independent Brownian bridges. With (S2), it
suffices to show

sup
y

1

nK

∑
i∈Ik

{uk(y|Xi)− EX(uk(y|X))} = op(n
−1/2
K ),

sup
y

1

mK

∑
i∈I′

k

{uk(y|Xi)− EX(uk(y|X))} = op(m
−1/2
K ).

We have shown in (S7), 85

EX

sup
y

∣∣∣∣∣∣n−1/2
K

∑
i∈Ik

[uk(y|Xi)− EX{uk(y|X)}]

∣∣∣∣∣∣
 ≲ ϱ1−η/2

n = op(1),

Then, by Lemma S2, the conclusion (5) in the theorem follows.

S1.3. Proof of other theoretical results
Proof of Proposition 1. From the proof of Theorem 1, we have that the asymptotic covari-

ance of F̂basd is the same as that of F̂basd,0 defined in (S3). Thus, we consider the uniform
weak convergence of F̂basd,0 in (S3) with G consisting of F0(y|X) = pr{Y ≤ y | h(X)} to 90

give the asymptotic covariance. The function class G = {F0(y|X) : y ∈ R} is a monotone
process due to the form pr{Y ≤ y | h(X)}. Let −∞ = ξ0 < ξ1 < · · · < ξM = +∞ such that
E{F0(ξi − |X)} − E{F0(ξi−1|X)} ≤ ϵ2, where M = 1/ϵ2 and f(x0−) = limx↑x0 f(x) is the
left-sided limit as x approaches x0 for a function f . Then, [F0(ξi−1|X), F0(ξi − |X)] (i =
1, . . . ,M) constitute the ϵ-brackets of G in L2(P ). Thus, N[ ](ϵ,G, L2(P )) ≤ ϵ−2, which sat- 95

isfies the assumption of Lemma S4. So, we have n1/2{F̂basd,0 − F (y)}⇝ F(y;G) uniformly
over y ∈ R, by Lemma S4.

The covariance of F(·;G) is

cov

(
F(s;G)
F(t;G)

)
= (1− γ)cov

(
1s(Y )
1t(Y )

)
+ γcov

(
1s(Y )− F0(s|X)
1t(Y )− F0(t|X)

)
, (S9)

for any s, t ∈ R. By law of total expectation,

cov

{(
1s(Y )
1t(Y )

)
,

(
F0(s|X)
F0(t|X)

)}
100

= E

{(
1s(Y )− F (s)
1t(Y )− F (t)

)(
F0(s|X)− F (s)
F0(t|X)− F (t)

)T}
= cov

(
F0(s|X)
F0(t|X)

)
. (S10)

Combining (S9) and (S10), we have

cov

(
F(s;G)
F(t;G)

)
= (1− γ)cov

(
1s(Y )
1t(Y )

)
+ γ

{
cov

(
1s(Y )
1t(Y )

)
− cov

(
F0(s|X)
F0(t|X)

)}
= cov

(
1s(Y )
1t(Y )

)
− γcov

(
F0(s|X)
F0(t|X)

)
⩽ cov

(
1s(Y )
1t(Y )

)
,
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where M1 ⩽M2 for squared matrices M1,M2 means that M2 −M1 is a nonnegative
definite matrix, and the last inequality holds due to the nonnegative definiteness of
cov{(F0(s|X), F0(t|X))T}. □105

Proof of Corollary 1. The result is a direct application of the functional delta theorem (van der
Vaart, 1998, Chapter 20). □

S2. APPLICATIONS

S2.1. Conformal p-value
Conformal inference (Vovk et al., 2005) provides a powerful and flexible work to achieve110

distribution-free uncertainty quantification of predictors. Recently, there have been some works
to build conformal p-values for testing certain hypotheses (Bates et al., 2023; Zhang et al., 2022).
Jin & Candès (2023) specially investigated the prediction-oriented selection problem aiming
to select samples whose unobserved outcomes exceed some specified values and proposed to
construct conformal p-values of the predicted response values to implement the selection. For a115

test point X0 and its corresponding unobserved Y0, the corresponding hypothesis of interest is:

H0 : Y0 ≤ b0 versus H1 : Y0 > b0, (S11)

where b0 ∈ R is a given constant.
A standard conformal test statistic and its p-value for (S11) can be constructed as follows.

Denote µ̂(x) as a pre-specified estimator of E(Y | X = x) and µ̂(X0) as the predicted value of
Y0. By choosing a monotone function V : Rp × R → R, such as V (x, y) = y − µ̂(x), one could120

obtain scores {Vi = V (Xi, Yi)}i∈L and V̂0 = V (X0, b0). Then, the conformal p-value for this
test (S11) is then computed as p̂CP = {1 +

∑n
i=1 1V̂0

(Vi)}/(n+ 1). However, the small size n
of labeled data often results in large variation in p̂CP.

We observe that the conformal p-value p̂CP is actually derived from the empirical cumula-
tive distribution function of V , that is, p̂CP = {1 + nF̂ecdf,V (V̂0)}/(n+ 1), where F̂ecdf,V (v) =125

n−1
∑n

i=1 1v(Vi). In the heterogeneous cases (Romano et al., 2019), V is still related to covariate
X , allowing us to apply the proposed procedure to observations {(Vi, Xi)}ni=1 and {Xi}n+m

i=n+1
to reduce the variance in p̂CP. Thus, the semi-supervised conformal p-value can be given by
p̂basd = 1 + nF̂basd,V (V̂0)/(n+ 1), where F̂basd,V (·) is the estimated distribution function from
Algorithm 1 of Section S3.1.130

COROLLARY S1. Let FV (v) = pr(V ≤ v | µ̂) and p0 = FV (V̂0) be the cumulative distribu-
tion function of V and the corresponding p-value at X0. Provided that Theorem 1 holds for some
F0,V (v|x), we have conditional on µ̂ and X0,

n1/2 (p̂basd − p0)⇝ N
(
0, (1− γ)var

{
1V̂0

(V )
}
+ γvar

{
1V̂0

(V )− F0,V (V̂0|X)
})

.

Proof of Corollary S1. This result directly follows from Theorem 1. □
In contrast, the standard conformal p-value satisfies n1/2 (p̂CP − p0)⇝ N (0, var{1V̂0

(V )})135

given µ̂ and X0. Similar arguments can exhibit that under some conditions, p̂basd achieves a
smaller asymptotic variance compared to p̂CP. Numerical results in Section S4.4 further illustrate
the superiority of the semi-supervised conformal p-value.

S2.2. Local distributional treatment effects
In the past decades, casual inference has drawn significant attention and aims to reliably an-140

alyze the counterfactual quantities of an outcome variable with or without a treatment (Imbens
& Rubin, 2015). Let Y0i and Y1i be the potential outcome for individual i without and with
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treatment, respectively. The observed outcome is the realized value Yi = (1−Di)Y0i +DiY1i,
where Di ∈ {0, 1} is the treatment status. To address non-randomized treatment, instrumental
variables are commonly employed (Angrist et al., 1996). With a binary instrumental variable 145

Zi for the ith individual, the analyst observes the realized treatment Di = D1iZi +D0i(1− Zi)
instead of the potential treatment indicators (D0i and D1i) in practice. Together with additional
control variables Xi, the observed data are {(Yi, Xi, Di, Zi)}ni=1. The distributional treatment
effects could be useful for policymakers who wish to take into account not only differences
in average outcomes (Imbens & Rubin, 1997). The focus of distributional treatment effects is 150

to test the difference between F (1)

C = pr(Y1i ≤ y | D0i = 0, D1i = 1) and F (0)

C = pr(Y0i ≤ y |
D0i = 0, D1i = 1) (Abadie, 2002; Chernozhukov et al., 2013). For example, consider the null
hypothesis H0 : F

(1)

C = F (0)

C .
By introducing the instrumental variable Zi and imposing certain identifiability assumptions,

the local distributional treatment effect can be written as (Abadie, 2002), 155

F (1)

C (y)− F (0)

C (y) =
pr(Yi ≤ y | Zi = 1)− Pr(Yi ≤ y | Zi = 0)

pr(Di = 1 | Zi = 1)− pr(Di = 1 | Zi = 0)
= κ{F (1)(y)− F (0)(y)},

(S12)

where κ = 1/{pr(Di = 1 | Zi = 1)− pr(Di = 1 | Zi = 0)} < ∞ is a constant. Testing the
equality of F (1)

C and F (0)

C is therefore equivalent to testing H0 : F
(1) = F (0). Let I(1) = {i :

Zi = 1} and I(0) = {i : Zi = 0} with sample sizes of n1 and n0 respectively. The conventional
approach is to construct the Kolmogorov-Smirnov statistic based on F̂ (1)

ecdf(y)− F̂ (0)

ecdf(y) :=
n1

−1
∑

i∈I(1) 1y(Yi)− n0
−1
∑

i∈I(0) 1y(Yi). 160

When control covariates Xi independent of Zi are available, the proposed procedure could
help improve the estimation efficiency of F (1) − F (0). We can treat {(Xi, Yi)}i∈I(1) and
{Xi}i∈I(0) as labeled and unlabeled data, and use the proposed method to obtain semi-supervised
estimator F̂ (1)

basd(y). Concretely, we do partitions I(1) = I(1)

1 ∪ · · · ∪ I(1)

K and I(0) = I(0)

1 ∪ · · · ∪
I(0)

K , and obtain the conditional cumulative distribution function estimator {F̂ (1)

k (y|x) : y ∈ R} 165

based on {(Xi, Yi)}i∈I(1)
−k

for each k ∈ {1, . . . ,K}. Then,

F̂ (1)

basd(y) =
1

n

K∑
k=1

∑
i∈I(1)

k
∪I(0)

k

F̂ (1)

k (y|Xi) +
1

n1

K∑
k=1

∑
i∈I(1)

k

{
1y(Yi)− F̂ (1)

k (y|Xi)
}
.

With similar notations {F̂ (0)

k (y|x) : y ∈ R}, we have

F̂ (0)

basd(y) =
1

n

K∑
k=1

∑
i∈I(1)

k
∪I(0)

k

F̂ (0)

k (y|Xi) +
1

n0

K∑
k=1

∑
i∈I(0)

k

{
1y(Yi)− F̂ (0)

k (y|Xi)
}
.

The Kolmogorov-Smirnov statistic is accordingly constructed with

F̂ (1)

basd(y)− F̂ (0)

basd(y) =
1

n1

K∑
k=1

∑
i∈I(1)

k

{
1y(Yi)− F̂k(y|Xi)

}
− 1

n0

K∑
k=1

∑
i∈I(0)

k

{
1y(Yi)− F̂k(y|Xi)

}
,

(S13)
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where F̂k(y|x) = n0F̂
(1)

k (y|x)/n+ n1F̂
(0)

k (y|x)/n. By similar assumptions to Assumption 1–2
on F̂ (1)

k (y|x) and F̂ (0)

k (y|x) for some F (1)

0 (y|x) and F (0)

0 (y|x), respectively, we have170

F̂ (1)

basd(y)− F̂ (0)

basd(y) =
1

n1

∑
i∈I(1)

{1y(Yi)− F0(y|Xi)} −
1

n0

∑
i∈I(0)

{1y(Yi)− F0(y|Xi)}+ op(n
−1/2),

(S14)
where F0(y|x) = n0F

(1)

0 (y|x)/n+ n1F
(0)

0 (y|x)/n.
Next, we introduce the theory of F̂ (1)

basd(y)− F̂ (0)

basd(y) based on (S14).
Assumption S1. (i) Independence of the instrumental variable: (Y0i, Y1i, D0i, D1i) is indepen-

dent of Zi. (ii) 0 < pr(Zi = 1) = λ < 1 and pr(D1i = 1) > pr(D0i = 1). (iii) Monotonicity:
pr(D1i ≥ D0i) = 1. (iv) Zi is also independent of Xi.175

Assumption S1(i)–(iii) are widely-used identifying assumptions (Abadie, 2002). Assump-
tion S1(iv) is the requirement for the semi-supervised setting and is valid in many empirical
studies such as those in Angrist (1990) and Angrist & Krueger (1991), where a purely random
quantity, like draft lottery or quarter of birth, serves as the instrumental variable.

PROPOSITION S1. Suppose that (S14) holds, and G(j) = {F (j)

0 (y|X) : y ∈ R} satisfies that180

logN[ ](ϵ,G(j), L2(PX)) ≲ ϵ−η for every ϵ > 0, some η ∈ (0, 2), and each j ∈ {0, 1}. Then, pro-
vided with Assumption S1, we have

(n1n0/n)
1/2
{
F̂ (1)

basd(y)− F̂ (0)

basd(y)
}
⇝ B ◦ [1y(Y )− {λF (0)

0 (y|X) + (1− λ)F (1)

0 (y|X)}]

uniformly over y ∈ R under H0 : F
(1) = F (0), where B is a Brownian bridge.

Proof of Proposition S1. We prove the conclusions following Chapter 3.7 of van der Vaart
& Wellner (1996). By the assumptions on G(1) and G(0), it is easy to show that the function185

class F = {1y(Y )− F0(y|X) : y ∈ R} with F0(y|X) = {n1F
(0)

0 (y|X) + n0F
(1)

0 (y|X)}/n is
Donsker. Define the empirical measures

P1,n1 =
1

n1

∑
i∈I(1)

δ(Yi,Xi), P0,n0 =
1

n0

∑
i∈I(0)

δ(Yi,Xi), (S15)

where δ(Y,X) is the Dirac probability measure at the point (X,Y ). By Theorem 3.5.1 in van der
Vaart & Wellner (1996), we have

n
1/2
1 (P1,n1 − P1)⇝ B1,P1 , n

1/2
0 (P0,n0 − P0)⇝ B2,P0

in ℓ∞(F), where ℓ∞(F) is the set of uniformly bounded real functions on F and B1,P ,B2,P are190

two independent P -Brownian bridges. We have

(n1n0/n)
1/2 (P1,n1 − P0,n0)

= (n0/n)
1/2
{
n
1/2
1 (P1,n1 − P1)

}
− (n1/n)

1/2
{
n
1/2
0 (P0,n0 − P0)

}
+ (n0n1/n)

1/2(P1 − P0).

Under P1 = P0 = P , (n1n0/n)
1/2 (P1,n1 − P0,n0) converges weakly to (1− γ)1/2B1,P −

γ1/2B2,P , which is the same in distribution as B1,P . The conclusion follows. □

Abadie (2002) showed that (n1n0/n)
1/2{F̂ (1)

ecdf(y)− F̂ (0)

ecdf(y)}⇝ B ◦ 1y(Y ). It can be seen
that under similar conditions to Proposition 1, F̂ (1)

basd − F̂ (0)

basd is asymptotically more efficient195

than F̂ (1)

ecdf(y)− F̂ (0)

ecdf .
Next, we introduce some tests on the counterfactual distributions F (1)

C and F (0)

C . We have
shown in (S12) that F (1)

C − F (0)

C = κ{F (1) − F (0)}, where κ is a constant and F (j)(y) = pr{Y ≤
y | Z = j}. Through the Kolmogorov-Smirnov statistic and the modified Kolmogorov-Smirnov
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statistic (McFadden, 1989), we can test the equality and the first-order stochastic dominance by 200

using F̂ (1)

basd − F̂ (0)

basd. Concretely, we test the equality (i.e., Heq
0 : F (1)

C = F (0)

C ) by

T eq
basd = (n1n0/n)

1/2 sup
y∈R

∣∣∣F̂ (0)

basd(y)− F̂ (1)

basd(y)
∣∣∣ ,

and the first-order stochastic dominance (i.e., Hfsd
0 : F (1)

C (y) ≥ F (0)

C (y) for all y ∈ R) by

T fsd
basd = (n1n0/n)

1/2 sup
y∈R

{
F̂ (0)

basd(y)− F̂ (1)

basd(y)
}
.

Let P1, P0 be the probability distribution of Y conditional on Z = 1 and Z = 0, respectively.
Let F = {1y(Y )− F0(y|X) : y ∈ R} and Dn = (n1n0/n)

1/2(P1,n1 − P0,n0), where P1,n1 and
P0,n0 are empirical measures defined in (S15). From Proposition S1, we can see that under P1 = 205

P0 = P ,

Dn = (n0/n)
1/2
{
n
1/2
1 (P1,n1 − P1)

}
− (n1/n)

1/2
{
n
1/2
0 (P0,n0 − P0)

}
⇝ BP , in ℓ∞(F),

where BP is a P -Brownian bridge. For z ∈ ℓ∞(F), we can define two operators T eq(z) =
supf∈F |z(f)| and T fsd(z) = supf∈F z(f), which are continuous on z. Thus, by continuous
mapping theorem, T eq(Dn)⇝ T eq(BP ) and T fsd(Dn)⇝ T fsd(BP ), respectively. We use the
least favorable case (P1 = P0 = P ) to derive the asymptotic null distribution. It can be seen the 210

statistics go into infinity under any fixed alternative.
The asymptotic null distribution depends on the underlying distribution P . So, we give a

sampling strategy to approximate the null distribution. Letting ζi(y) = ζ(y;Xi, Yi) = 1y(Yi)−
F0(y|Xi), we first define the sample covariance of BP . Under P0 = P1 = P , the underly-
ing distributions of (X,Y ) conditional on Z = 1 and Z = 0 are the same, so we can set 215

Σ̂(s, t) = n−1
∑n

i=1{ζi(s)− ζ̄(s)}{ζi(t)− ζ̄(t)}, where s, t ∈ R and ζ̄(s) = n−1
∑n

i=1 ζi(s).
Then, we draw L realizations B1, . . . , BL from the centered Gaussian process with covariance
function Σ̂ and calculate gℓ = supy∈R |Bℓ(y)| for testing equality or gℓ = supy∈RBℓ(y) for test-
ing first-order stochastic dominance for each realization Bℓ. Finally, we reject the null hypothesis
(equality or first-order stochastic dominance) if the corresponding statistic exceeds the threshold 220

cn, where cn is the (1− α)th sample quantile of g1, . . . , gL.

S3. AUXILIARY MATERIALS

S3.1. Algorithm
We summarize the proposed method in Algorithm 1, including estimation and inference.

S3.2. Monotonization via rearrangement 225

It is important to address a technical concern regarding the potential non-monotonicity of
F̂basd(y), which stems from the subtraction term in the definition (1) of the proposed estimator.
While non-monotonicity might not pose problems in certain applications due to uniform conver-
gence, it can be visually apparent and affect interpretation.

We address this issue with the rearrangement operation, a general strategy for monotoniz- 230

ing an initial estimate of an unknown monotonic function (Chernozhukov et al., 2009, 2010).
The procedure involves an increasing bijective mapping φ : R 7→ [0, 1], such as the cumulative
distribution function of a standard Gaussian random variable. The increasing rearrangement of
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Algorithm 1. Bias-Amended Semi-supervised Distribution (BASD)

Input: Observed data L = {(Yi, Xi)}ni=1 and U = {Xi}n+m
i=n+1, conditional distribution

estimation algorithm A, number of folds K, number of sampling for inference B.
Discrete index grid −∞ < y0 < · · · < yQ < +∞.
Randomly partition L into K nearly equal-sized disjoint subsets L1, . . . ,LK .
Randomly partition U into K nearly equal-sized disjoint subsets U1, . . . ,UK .
/* Estimation */
for k = 1, . . . ,K do

Obtain {F̂k(yq|x) : 0 ≤ q ≤ Q} with learning algorithm A based on L−k.
Get the estimator in the kth fold F̂k,B by (2), numerically approximated on grid.

Summarize the K estimators by averaging to get F̂basd by (3).
/* Inference */
for k = 1, . . . ,K do

Calculate V1,k = {(1y0(Yi), . . . ,1yQ(Yi))T}Yi∈Lk
.

Calculate V2,k = {(1y0(Yi)− F̂k(y0|Xi), . . . ,1yQ(Yi)− F̂k(yQ|Xi))
T}(Yi,Xi)∈Lk

.
Get the sample covariance Σ̂1 of B1 ◦ 1y(Y ) using V1,1 ∪ · · · ∪ V1,K .
Get the sample covariance Σ̂2 of B2 ◦ {1y(Y )− F0(y|X)} using V2,1 ∪ · · · ∪ V2,K .
Calculate the sample covariance Σ̂ = (nΣ̂1 +mΣ̂2)/(n+m) of F(y;G).
Generate B realizations on grid F1, . . . ,FB ∼ N (0, Σ̂).
Calculate gb = max0≤q≤Q |Fb(yq)| for b = 1, . . . , B.
Get the upper (1− α)th sample quantile of {g1, . . . , gB} as the threshold L.
Output: The cross-fitted cumulative distribution function estimator F̂basd and the

confidence band F̂basd ± Ln−1/2 numerically approximated on grid.

F̂basd(y), denoted as F̂ †
basd(y), is defined as F̂ †

basd(y) = Q† ◦ φ(y), where

Q†(u) = inf

{
y ∈ R :

∫ 1

0
1y(Q(x))dx ≥ u

}
and Q ≡ F̂basd ◦ φ−1.

The key lies in leveraging the fact that rearrangement can monotonize functions from [0, 1] to235

[0, 1]. For the cumulative distribution function estimator from R to [0, 1], we first use a bijection
φ to obtain Q = F̂basd ◦ φ−1 : [0, 1] 7→ [0, 1]. Then, Q is rearranged to yield the monotonized
Q†, which is the quantile function of the random variable Q(U) with U ∼ Unif[0, 1]. Finally,
to get the rearrangement of F̂basd, we compose Q† with the bijection φ, resulting F̂basd(y) =
Q† ◦ φ(y).240

It is crucial that the rearrangement is a deterministic mathematical operation, ensuring a map-
ping from F̂basd(y) to F̂ †

basd(y) is non-random. With the conclusions on rearrangement (Cher-
nozhukov et al., 2009, 2010), we have the following proposition for the rearrangement F̂ †

basd(y).
PROPOSITION S2. Suppose F (y) has ∇F (y) > 0 for each y. If Theorem 1 holds for F̂basd(y),

it still holds for the corresponding rearrangement F̂ †
basd(y).245

Proof of Proposition S2. The conclusions follow from Proposition 1 in Chernozhukov et al.
(2009) and Corollary 3 in Chernozhukov et al. (2010). □

It is also worth emphasizing that by applying rearrangement to the conditional cumulative
distribution function estimator F̂k(y|x), Assumption 2 is naturally satisfied by the rearranged
F̂k(y|x). In particular, according to Proposition 5 of Chernozhukov et al. (2010), the rearrange-250
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ment F̂ †
k(y|x) of F̂k(y|x) converges to the rearrangement F †

0(y|x) of F0(y|x). Both F̂ †
k(y|x) and

F †
0(y|x) are monotone with respect to y, so Assumption 2 can be verified.

S3.3. Parameter inference
In this section, we supplement some materials for parameter inference derived from the pro-

posed estimator. As the main text, we denote the parameter of interest as θ(F ), where θ(F ) is 255

Hadamard differentiable at F with derivative ∇θF (·).
We have shown in the main text that the asymptotic distribution of the plug-in estimator

θ(F̂basd) for a broader class of parameters, such as one sample U-statistics (Example 1), can
be derived through Corollary 1. Here, we present that the parameter inference derived from the
proposed distribution estimator aligns with some existing results in literature (Example S1–S2). 260

Example S1 (Mean). Let θ(F ) =
∫
ydF (y) be the mean of Y . Then,

∇θF {F(·;G)}
d∼ N

(
0, (1− γ)var(Y ) + γvar

{
Y −

∫
ydF0(y|X)

})
,

which coincides with the results in Zhang et al. (2019) and Zhang & Bradic (2022), where they
established the

√
n-consistency and asymptotic normality on semi-supervised mean inference.

This alignment arises because
∫
ydF0(y|X) can be taken as an approximation of the conditional

mean function E(Y | X) =
∫
ydF (y|X). 265

Example S2 (Quantile). Let θ(F ) = inf{y ∈ R : F (y) ≥ τ} = qτ be the τ th quantile. Then,

∇θF {F(·;G)}
d∼ N

(
0,

(1− γ)var{1qτ (Y )}+ γvar
{
1qτ (Y )−

∫
1qτ (y)dF0(y|X)

}
{∇F (qτ )}2

)
,

which aligns with the conclusion on semi-supervised quantile inference in Chakrabortty et al.
(2022) when we specify F0(y|X) = pr(Y ≤ y | MTX) for some matrix M ∈ Rp×q.

Next, we give a concrete example to demonstrate Remark 4 for parameters under the frame-
work of M-estimation or Z-estimation concretely. Define the population loss function ℓ(β) = 270

E|(Y1 −XT
1 β)− (Y2 −XT

2 β)|, where (Y1, X1) and (Y2, X2) are independent and identically
distributed copies. This loss is closely related to Jaeckel’s dispersion function with Wilcoxon
scores (Wang et al., 2020). Denoting f(z1, z2) = |z1 − z2| and Z(β) = Y −XTβ, we target at
estimating ℓ(β) = E{f(Z1(β), Z2(β))} as Example 1. We then take Z(β) and X as the response
and covariates, respectively, and the proposed estimator F̂basd,Z(·;β) for the distribution of Z(β) 275

can be similarly obtained. Consequently, a semi-supervised empirical loss function would be
ℓ̂basd(β) =

∫∫
f(z1, z2)dF̂basd,Z(z1;β)dF̂basd,Z(z2;β). Minimizing such a loss could yield a

semi-supervised estimator for the parameter β. We anticipate that the semi-supervised empirical
loss function has a smaller asymptotic variance than its supervised counterpart. See Song et al.
(2024) for some similar discussions. 280

Remark S1. Regarding the practical implementation of θ(F̂basd), we give a computation
method through discretization. In particular, we first monotonize the proposed F̂basd through
rearrangement (Chernozhukov et al., 2009), which could provide a monotonized distribution es-
timator without altering conclusions in Theorem 1 (see Remark 1 and Section S3.2). We consider
the proposed distribution estimator after monotonization as F̂basd in the following statements. 285

A fine grid q1 < · · · < qN is employed such that qi = min{y : F̂basd(y) ≥ i/(N + 1)}, where
N ∈ Z+ is a large integer. We consider the step function F̌basd(y) = N−1

∑N
i=1 1(qi ≤ y)

as an approximation of F̂basd, and it can be easily derived that supy |F̂basd(y)− F̌basd(y)| ≤
(N + 1)−1. The parameter based on the step function θ(F̌basd) can be easily calculated. Thus,
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Table S1. Comparison of the proposed F̂basd for different choices of the number of cross-fitting
folds K. The overall mean squared error of the empirical distribution function is denoted by

MSE0. The level of the confidence band is set as α = 0.1

MSE/MSE0 Coverage Length×102

K 2 5 10 20 2 5 10 20 2 5 10 20
p = 100

F̂basd-GAMLSS 0.54 0.51 0.51 0.51 0.88 0.90 0.90 0.89 5.63 5.58 5.57 5.56
F̂basd-Engression 0.78 0.87 0.82 – 0.90 0.88 0.88 – 7.10 7.14 7.16 –
F̂basd-DRF 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90 7.16 7.06 7.05 7.03
F̂ecdf 1.00 1.00 1.00 1.00 0.90 0.90 0.90 0.90 7.36 7.36 7.36 7.36
p = 500

F̂basd-GAMLSS 0.92 0.90 0.88 0.87 0.88 0.88 0.88 0.88 7.14 7.06 7.04 7.03
F̂basd-Engression 0.94 0.83 0.82 – 0.89 0.90 0.88 – 8.08 7.66 7.57 –
F̂basd-DRF 0.99 0.99 0.99 0.99 0.87 0.87 0.86 0.86 7.34 7.35 7.35 7.33
F̂ecdf 1.00 1.00 1.00 1.00 0.87 0.87 0.87 0.87 7.37 7.37 7.37 7.37

F̂basd-GAMLSS, F̂basd-Engression and F̂basd-DRF represent the F̂basd estimators with A specified as the boosting
method for fitting generalized additive models (Hofner et al., 2016), the engression estimator (Shen & Meinshausen,
2024) and distributional random forests (Ćevid et al., 2022), respectively. “–” means that the experiment is stopped
before finishing due to a long running time.

θ(F̂basd) ≈ θ(F̌basd), and the numerical error |θ(F̂basd)− θ(F̌basd)| depends on both N and290

θ(·).

S4. ADDITIONAL NUMERICAL STUDIES

S4.1. Implementation details of the proposed method
The implementation of conditional cumulative distribution function estimation for the pro-

posed distribution estimators is outlined below. For the boosting method to fit generalized ad-295

ditive models for location, scale, and shape (Hofner et al., 2016), we employ the R package
gamboostLSS, as described in their article. The R package drf is used for distributional
random forests (Ćevid et al., 2022). For the neural network-based engression method (Shen
& Meinshausen, 2024), we utilize the R package engression. In the generating model
Y = µ(X) + σ(X)ε with ε ∼ N (0, 1), the true conditional cumulative distribution function300

used in the BASD∗ is explicitly given by Φ[{y − µ(X)}/σ(X)]. The number of replications
in the main text is 200.

S4.2. Additional simulations for distribution inference
In the main text, we considered 10 cross-fitting folds K = 10 for the simulations. Here, we

present results for other choices of K and provide guidance on selecting K in practice. In Ta-305

ble S1, we replicate the simulation settings from Table 1, and evaluate K ∈ {2, 5, 10, 20}. The
results indicate that efficiency generally improves as K increases, reflecting the fact that larger
K values allow for more samples to be used in training the conditional distribution models.
However, a larger K also results in greater computational costs, as the conditional distribution
models must be fitted more frequently. Thus, there is a trade-off between estimation accuracy and310

computational cost. We find that the proposed estimators with K ≥ 5 yields similar performance
for fitting conditional distribution models. Hence, we set K = 10 in Section 3 and recommend
choosing K ≥ 5 in practice.
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Table S2. Comparison of the proposed F̂basd and the empirical cumulative distribution function
F̂ecdf in the same settings as Table 1 except under different p’s. The overall mean squared error
of the empirical cumulative distribution function is denoted by MSE0. The level of the confidence

band is set as α = 0.1

p = 10 p = 1000
MSE/MSE0 Coverage Length×102 MSE/MSE0 Coverage Length×102

F̃ ∗
basd 0.47 0.88 5.52 0.48 0.90 5.53

F̂basd-GAMLSS 0.46 0.90 5.53 0.97 0.90 7.30
F̂basd-Engression 0.48 0.90 5.60 1.04 0.92 8.29
F̂basd-DRF 0.48 0.88 5.56 1.00 0.89 7.37
F̂ecdf 1.00 0.88 7.37 1.00 0.90 7.35

F̃ ∗
basd, F̃basd with known F (y|x); F̂basd-GAMLSS, F̂basd-Engression and F̂basd-DRF represent the F̂basd estimators

with A specified as the boosting method for fitting generalized additive models (Hofner et al., 2016), the engression
estimator (Shen & Meinshausen, 2024) and distributional random forests (Ćevid et al., 2022), respectively.

p = 10 p = 1000
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Fig. S1. The ratio of pointwise mean squared errors of F̂basd in the same settings as Table S2. The pointwise mean
squared error of F̂ecdf is denoted by pMSE0(y). The plot includes F̃ ∗

basd (green, solid), F̂basd-GAMLSS (red,
dashed), F̂basd-Engression (purple, twodash), and F̂basd-DRF (blue, dotdash). The curve (darkgray, longdash) is
the theoretical relative semi-parametric efficiency lower bound. See the footnotes below Table S2 for the concrete

explanation of methods.

In addition to the results for p = 100 and p = 500 presented in the main text, we also provide
results for p = 10 and p = 1000 under the same setting in Table S2 and Fig. S1, using K = 5. 315

We can see that, our proposed framework still works as F̂basd with true conditional distribution
function (i.e., BASD∗) still achieves the semi-parametric efficiency lower bound, but the prefor-
mance of conditional distribution estimators (and further the proposed distribution estimators)
deteriorates. Therefore, we recommend our proposed framework to be used when conditional
distribution function could be well estimated, which typically happens for the case with a rela- 320

tive small p to n.
Finally, we consider a complex model Yi = µ(Xi) + σ(Xi)εi (i = 1, . . . , n+m) with

µ(Xi) = 3 cos(
∑3

j=1Xij) and σ(Xi) = exp(
∑7

j=4Xij/2)/3, where Xi = (Xi1, . . . , Xip)
T ∼

Np(0p, Ip) and εi ∼ N (0, 1) are independent. We set (n, p,K) = (1000, 50, 5) and m ∈
{0.5n, n, 5n, 10n}, and list the results in Table S3 and Fig. S2. The results indicate that as m in- 325

creases, the performance of the proposed estimators improves, which coincides with our theory.
Also, it can be observed that our distribution estimators perform well in this setting.
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Table S3. Comparison of the proposed F̂basd and the empirical cumulative distribution function
F̂ecdf in the nonlinear setting. The overall mean squared error of the empirical distribution

function is denoted by MSE0. The level of the confidence band is set as α = 0.1

MSE/MSE0 Coverage Length×102

m/n 0.5 1 5 10 0.5 1 5 10 0.5 1 5 10

F̃ ∗
basd 0.73 0.58 0.33 0.28 0.90 0.92 0.92 0.92 6.43 5.93 4.74 4.44

F̂basd-GAMLSS 0.98 0.95 0.89 0.88 0.91 0.90 0.90 0.90 7.25 7.21 7.10 7.09
F̂basd-Engression 0.90 0.89 0.82 0.75 0.90 0.91 0.89 0.92 7.17 7.10 6.90 6.86
F̂basd-DRF 0.98 0.97 0.95 0.95 0.90 0.90 0.92 0.90 7.30 7.27 7.24 7.21
F̂ecdf 1.00 1.00 1.00 1.00 0.91 0.91 0.91 0.91 7.36 7.36 7.36 7.36

F̃ ∗
basd, F̃basd with known F (y|x); F̂basd-GAMLSS, F̂basd-Engression and F̂basd-DRF represent the F̂basd estimators

with A specified as the boosting method for fitting generalized additive models (Hofner et al., 2016), the engression
estimator (Shen & Meinshausen, 2024) and distributional random forests (Ćevid et al., 2022), respectively.

m = 5000 m = 10000

m = 500 m = 1000
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Fig. S2. The ratio of pointwise mean squared errors of F̂basd in the nonlinear setting. The pointwise
mean squared error of F̂ecdf is denoted by pMSE0(y). The plot includes F̃ ∗

basd (green, solid), F̂basd-
GAMLSS (red, dashed), F̂basd-Engression (purple, twodash), and F̂basd-DRF (blue, dotdash). The curve
(darkgray, longdash) is the theoretical relative semi-parametric efficiency lower bound. See the footnotes

below Table S3 for the concrete explanation of methods.

S4.3. Mean inference
We proceed to show the performance of the proposed framework applied to parameter infer-

ence (see Section 2.3). Specifically, we consider the mean inference of Y , i.e. θ =
∫
ydF (y). The330

data is generated the same as that in Section 3. We compare our procedure with several popular
methods: the sample mean calculated by the labeled data, the semi-supervised mean estimator
with least-squares in Zhang et al. (2019) and the one incorporating random forests in Zhang &
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Table S4. Comparison of ratios of mean squared errors of semi-supervised mean estimators to
supervised sample mean

Plug-in Estimators θ(F̂ ) Literature
F̃ ∗
basd F̂basd-GAMLSS F̂basd-Engression F̂basd-DRF Zhang et al. (2019) Zhang & Bradic (2022)

p = 10 0.30 0.30 0.32 0.33 0.29 0.34
p = 100 0.30 0.32 0.51 0.84 0.30 0.68
p = 500 0.31 0.82 0.46 0.98 0.44 0.90
p = 1000 0.33 0.96 0.68 0.99 – 0.97

F̃ ∗
basd, F̃basd with known F (y|x); F̂basd-GAMLSS, F̂basd-Engression and F̂basd-DRF represent the F̂basd estimators

with A specified as the boosting method for fitting generalized additive models (Hofner et al., 2016), the engression
estimator (Shen & Meinshausen, 2024) and distributional random forests (Ćevid et al., 2022), respectively. “–” indi-
cates the method is not applicable in the current setting.

Table S5. Mean squared error ratio Ê(p̂basd − p0)
2/Ê(p̂CP − p0)

2 in dif-
ferent settings

X0 = (3, 1) X0 = (4, 4)

b0 p0
m

p0
m

500 1000 5000 500 1000 5000

10 0.531 0.996 0.993 0.990 0.075 0.966 0.963 0.963
15 0.707 0.891 0.883 0.878 0.097 0.957 0.952 0.950
20 0.774 0.884 0.872 0.864 0.125 0.960 0.958 0.954
30 0.848 0.881 0.867 0.862 0.228 0.966 0.961 0.960

Bradic (2022). We compare the ratio of mean squared errors of the semi-supervised estimator
to the supervised sample mean in Table S4. The value less than one means that the correspond- 335

ing semi-supervised mean estimator is more efficient than the sample mean. We can see that the
semi-supervised mean estimators all works, and our proposed estimators are comparable to those
in the literature.

S4.4. Conformal p-value
We now compare the semi-supervised conformal p-values with the conformal p-values com- 340

puted in Jin & Candès (2023). The model is generated by Yi = µ(Xi) + σ(Xi)εi, where
µ(X) = 2

∑2
j=1(X

2
j − 3), σ(X) = 5.5− |µ(X)| and εi∼N (0, 1) is the i.i.d. random noise in-

dependent of Xi. Two-dimensional covariates are independently generated as Xi∼Unif([0, 5]2).
We set n = 100, m ∈ {500, 1000, 5000} and use random forests to estimate model µ̂(·) with
another n training data. Our proposed method employs the distributional random forests (Ćevid 345

et al., 2022) as learning algorithm A.
We consider two test points of interest X0 ∈ {(3, 1), (4, 4)} and the hypothesis H0 : Y0 ≤ b0

in (S11) with b0 ∈ {10, 15, 20, 30}, ensuring a diverse range of corresponding p-values. The
mean squared error ratio Ê(p̂basd − p0)

2/Ê(p̂CP − p0)
2 is listed in Table S5. For both test set-

tings, all ratio values are less than 1 and the ratio decreases as the number of unlabeled data 350

increases.

S4.5. Local distributional treatment effect
We illustrate the proposed method for testing the local distributional treatment effect using

observed data {(Yi, Di, Zi, Xi)}ni=1, where Zi∼Bernoulli(0.4) and Di = D0i + Zi(D1i −D0i)
with paired (D0i, D1i) generated independently such that pr(D0i = 0, D1i = 0) = pr(D0i = 355
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Table S6. Empirical sizes (∆ = 0) and powers (∆ > 0) for testing local distribu-
tional treatment effects when α = 0.1, p = 5 and n ∈ {200, 1000}

Heq
0 : F (1)

C = F (0)

C Hfsd
0 : F (1)

C ≥ F (0)

C

∆ = 0 0.2 0.4 0.6 ∆ = 0 0.2 0.4 0.6
n = 200
BASD 0.087 0.173 0.422 0.708 0.108 0.286 0.586 0.844
Abadie (2002) 0.101 0.123 0.184 0.267 0.112 0.193 0.288 0.398

n = 1000
BASD 0.098 0.560 0.985 1.000 0.086 0.709 0.998 1.000
Abadie (2002) 0.098 0.213 0.448 0.733 0.108 0.299 0.603 0.848

BASD, the test based on F̂ (0)

basd(y)− F̂ (1)

basd(y) in (S13).

1, D1i = 1) = 1/5 and pr(D0i = 0, D1i = 1) = 3/5. For generating Yi = Y0i +Di(Y1i − Y0i),
we consider Y0i = XT

i β + εi with β = (2,−1, 0.5, 0, . . . , 0)T, εi∼N (0, 1) and Xi ∼ N (0, Ip),
and Y1i = Y0i +∆, where ∆ is the signal magnitude with ∆ ∈ {0, 0.2, 0.4, 0.6}. The goal is to
test the hypotheses Heq

0 : F (1)

C = F (0)

C and Hfsd
0 : F (1)

C ≥ F (0)

C , as aforementioned in Section S2.2.
We compare the empirical sizes and powers of the test equipped with our proposed method and360

the test proposed in Abadie (2002). Our proposed method chooses the distributional single-index
model (Henzi et al., 2021) as the learning algorithm A. The nominal level is set as α = 0.1 and
the critical value is obtained from 2,000 resamplings. Table S6 reports the results on the equal-
ity and first-order stochastic dominance tests under p = 5 and n ∈ {200, 1000}. The proposed
method has empirical sizes close to the nominal level, and it also performs more powerful than365

Abadie (2002) as the signal magnitude increases. This improvement is expected as our method
properly uses more information from covariates.

S4.6. Real data analysis
We consider an application of estimating homeless people in Los Angeles Country. Homeless-

ness has been a public issue for America since near a century ago (Rossi, 1991). A key question370

for the demographers is to estimate the number of homeless in a specific region, as this informa-
tion can help stakeholders (e.g., homeless service advocates and selected government agencies)
determine the required social resources. However, it is challenging because the homeless are of-
ten dispersed (Rossi, 1991). Although visiting homeless shelters can provide some data, many
homeless individuals remain uncounted, as they may not utilize these services.375

We use data from a study conducted by Los Angeles Homeless Services Authority in 2004–
2005, which was also analysed by Zhang et al. (2019). Los Angeles County spans over 4000
square miles and includes 2054 census tracts, making a full street survey prohibitively expen-
sive. Therefore, a stratified spatial sampling of census tracts was employed. First, 244 tracts
believed to have large numbers of homeless were visited. Next, for the rest of the tracts, 265 of380

them were randomly selected and visited, leaving 1545 unvisited tracts. In addition to homeless
counts, some covariates known to correlate with the response were available for all 2054 census
tracts (Kriegler & Berk, 2010), and seven of these covariates were included in our analysis (see
Table S7).

The total number of homeless in Los Angeles can be calculated through estimating the av-385

erage number of homeless per tract in all 1810 non-preselected tracts. To do this, we apply the
proposed framework for mean inference to these 1810 samples, which include 265 labeled and
1545 unlabeled samples. The conditional cumulative distribution function estimation methods
are as described in Section 3. We compare the semi-supervised mean estimators proposed by
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Table S7. Covariate names in the homeless data
Name Description

Perc.Industrial % of land used for industrial purposes
Perc.Residential % of land used for residential purposes
Perc.Vacant % of land that is vacant
Perc.Commercial % of land used for commercial purposes
Perc.OwnerOcc % of owner-occupied housing units
Perc.Minority % of population that is non-Caucasian
MedianHouseholdIncome Median household income

Table S8. Estimated average number of homeless per tract in all 1810 non-preselected tracts.
The Length refers to the length of 95% confidence interval

Plug-in Estimators
∫
ydF̂ (y) Literature

Sample Mean
F̂basd-GAMLSS F̂basd-DRF F̂basd-Engression Zhang et al. (2019) Zhang & Bradic (2022)

Estimate 21.89 22.45 22.75 22.38 22.35 21.61
Length 7.70 7.46 8.15 7.40 7.77 7.75

F̂basd-GAMLSS, F̂basd-Engression and F̂basd-DRF represent the F̂basd estimators with A specified as the boosting
method for fitting generalized additive models (Hofner et al., 2016), the engression estimator (Shen & Meinshausen,
2024) and distributional random forests (Ćevid et al., 2022), respectively.

Table S9. Estimated τ th quantiles of the homeless street count in all 1810
non-preselected tracts

Plug-in Estimators inf{y ∈ N : F̂ (y) ≥ τ}
Sample Quantile

F̂basd-GAMLSS F̂basd-DRF F̂basd-Engression

τ = 0.1 2 2 2 2
τ = 0.3 5 5 5 5
τ = 0.5 12 12 13 12
τ = 0.7 24 25 26 24
τ = 0.9 47 47 48 47

See the footnotes below Table S8 for the concrete explanation of methods.

Zhang et al. (2019) using least squares and by Zhang & Bradic (2022) using random forest im- 390

plementation. The results are summarized in Table S8.
According to Zhang et al. (2019), it is reasonable to obtain estimates higher than the sample

mean, and the semi-supervised estimates align with this analysis. We also observe that, the pro-
posed estimate using the conditional distribution estimator “engression” (Shen & Meinshausen,
2024), yields a longer confidence interval, which can be attributed to the unstable fitting process 395

of the neural network. Overall, our estimates are comparable to the specialized methods reported
in the literature.

In addition to estimating the average number of homeless per tract, our framework can provide
more detailed information. The distribution of homeless counts is highly skewed: 75 percent
of the observed counts are fewer than 28 people, while 22 of the 265 tracts have at least 50 400

homeless individuals. To ensure adequate resource allocation, we recommend using the 70th
percentile estimate for budgeting purposes. Our semi-supervised quantile estimates suggest that
higher values than those obtained from the sample quantile should be considered.



18

REFERENCES

ABADIE, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. J. Am. Statist.405

Assoc. 97, 284–292.
ANGRIST, J. D. (1990). Lifetime earnings and the vietnam era draft lottery: Evidence from social security adminis-

trative records. Am. Econ. Rev. 80, 313–336.
ANGRIST, J. D., IMBENS, G. W. & RUBIN, D. B. (1996). Identification of causal effects using instrumental vari-

ables. J. Am. Statist. Assoc. 91, 444–455.410

ANGRIST, J. D. & KRUEGER, A. B. (1991). Does compulsory school attendance affect schooling and earnings? Q.
J. Econ. 106, 979–1014.
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