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SUMMARY

This study addresses the challenge of distribution estimation and inference in a semi-supervised

setting. In contrast to prior research focusing on parameter inference, this work explores the com-

plexities of semi-supervised distribution estimation, particularly the uniformity problem inherent in

functional processes. To tackle this issue, we introduce a versatile framework designed to extract valu-

able information from unlabelled data by approximating a conditional distribution on covariates. The

proposed estimator is derived using K-fold cross-fitting, and exhibits both consistency and asymp-

totic Gaussian process properties. Under mild conditions, the proposed estimator outperforms the

empirical cumulative distribution function in terms of asymptotic efficiency. Several applications of

the methodology are given, including parameter inference and goodness-of-fit tests.

Some key words: Asymptotic Gaussian process; Bias correction; Distributional regression; Functional delta

theorem; Semi-supervised distribution test.

1. Introduction

Distribution estimation stands as one of the most fundamental problems in statistical theory and

machine learning, encompassing applications such as goodness-of-fit testing, classification, regres-

sion and empirical Bayes methods. Traditionally, the empirical cumulative distribution function is

a widely adopted estimator in this realm. Given a set of independent and identically distributed

random variables {Yi}ni=1 with a common cumulative distribution function F , the empirical cumu-

lative distribution function (abbreviated as ecdf in subscript) is defined as F̂ecdf(y) = n−1
∑n

i=1 1y(Yi),

where 1y(Y ) is the indicator function of event {Y 6 y}. The empirical cumulative distribution func-

tion exhibits appealing properties, such as
√
n consistency in the ℓ∞ norm and asymptotic normality

(Dvoretzky et al., 1956; van der Vaart, 1998).

Despite the effectiveness of the empirical cumulative distribution function as a nonparametric

maximum likelihood estimator relying solely on {Yi}ni=1, we study scenarios where obtaining Yi is
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challenging due to high cost, time constraints or practical limitations. Often in such situations,

some associated side information, represented by covariates Xi ∈ R
p, is readily available. This

introduces a typical semi-supervised scenario, featuring two distinct datasets: a small or moderate

labelled setL = {(Xi,Yi)}ni=1 and a large unlabelled setU = {Xi}n+mi=n+1 with unobserved {Yi}n+mi=n+1, where

{(Xi,Yi)}n+mi=1 are independent copies of (X ,Y ) and m ≫ n. This situation is pervasive, as seen in

applications like electronic health records in healthcare, gene expression data in genomics and face

recognition in computer science. In such cases, a pertinent question arises: can one more efficiently

estimate the distribution of Y by leveraging the substantial side information present in both labelled

and unlabelled data, thereby surpassing the capabilities of F̂ecdf(y)?

Semi-supervised inference has emerged as a valuable tool for harnessing both labelled and

unlabelled data to enhance parameter inference and predictive capabilities, making significant

advancements in both the statistics and machine learning communities over the past decade. Among

others, Zhang et al. (2019) pioneered a method wherein the unlabelled Y was replaced with its pre-

diction derived from a linear projection of the conditional mean E(Y | X ). This approach involved

averaging both labelled Y and predictions of unlabelled Y to yield a semi-supervised mean estima-

tor. Building upon this, Zhang & Bradic (2022) extended the mean estimator to high-dimensional

settings, addressing potential biases. In the realm of quantile inference, Chakrabortty et al. (2024)

introduced a one-step semi-supervised estimator. The work of Yuval & Rosset (2022) proposed an

empirical risk minimization framework, analysing the derived semi-supervised estimator for general-

ized linear models. Adopting a perspective rooted inM-estimation for finite-dimensional parameter

estimation, Song et al. (2024) applied linear projection techniques to the loss function. Meanwhile,

Angelopoulos et al. (2023) imputed the unlabelled Y and aimed to enhance the score function from

the standpoint of Z-estimation.

Despite the notable strides in semi-supervised inference methods, the focus of these advancements

has mainly centred on a specific class of parameters, which often pertain to the expectation or quan-

tiles of a random variable. However, when dealing with parameters involving multiple independent

copies of a random variable, such as a one-sample U-statistic, the direct application of existing

methodologies appears to face theoretical and practical difficulties. Fortunately, the aforementioned

parameters can be expressed as continuous functions of the target cumulative distribution functionF ,

denoted θ(F). If we have a distribution estimator F̂ of F and its asymptotic distribution, a consistent

estimator θ(F̂) of θ(F) and its asymptotic distribution can be naturally derived. This observation

underscores the importance of addressing the problem of semi-supervised distribution estimation

and inference, which, to the best of our knowledge, has remained unexplored. The challenge lies in

the transition from a finite-dimensional parameter to an infinite-dimensional function, introducing

the complexity of uniformity.

This article introduces a framework for distribution estimation and inference within semi-

supervised contexts. Motivated by the fact that F(y) = E{1y(Y )} = E{F(y | X )}, where F(y |
x) = pr(Y 6 y | X = x), if we have a reliable estimator of F(y | x), denoted F̃(y | x), we can

naturally derive an intuitive estimator of F(y) through F̂intu(y) = (n+m)−1
∑n+m

i=1 F̃(y | Xi) based on

both labelled and unlabelled data. A rich body of literature exists on conditional cumulative distribu-

tion function estimations based on labelled data; see Kneib et al. (2023) for a comprehensive review.

However, most estimation methods fall short in yielding a fast converged F̃(y | X ) without stringent

and often impractical assumptions, significantly limiting their applicability in practice.

To address this issue, we observe that the potential bias term E{1y(Y ) − F̃(y | X )} can be effec-

tively estimated using labelled data (Xi,Yi) ∈ L, when the estimated function F̃(y | x) is independent
of labelled data. Inspired by this fact, we propose a general estimator, termed the bias-amended

semi-supervised distribution estimator (shortened to basd in subscript),

F̃basd(y) = 1

n+ m

n+m
∑

i=1

F̃(y | Xi) + 1

n

n
∑

i=1

{1y(Yi) − F̃(y | Xi)}. (1)
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Miscellanea 3

In essence, the first term leverages both labelled and unlabelled data to enhance efficiency, while the

second term is designed to rectify bias using the labelled data. To ensure the validity of the proposed

estimator (1), we employ a cross-fitting technique to acquire F̃(y | x), seamlessly integrating various

conditional cumulative distribution function estimation methods into our framework. Our analysis

establishes the
√
n consistency of the cross-fitted estimator to F(y) uniformly over y ∈ R, necessitat-

ing only weak consistency of F̃(y | x) instead of imposing specific requirements on the convergence

rate of F̃(y | x). The asymptotic Gaussian process of the proposed cross-fitted estimator is further

established, where the asymptotic covariancematrix characterizes how the unlabelled data contribute

to the estimation efficiency compared to F̂ecdf(y). It is crucial to emphasize that the transition from

parameter inference to functional inference yields benefits beyond functional inference itself. Leverag-

ing the functional delta theorem, our approach, not only recovers specialized solutions for parameter

inference found in the existing literature, but also offers a general and user-friendly method for infer-

ring a broad class of parameters beyond the scope of prior works. Simulation studies demonstrate

the practical efficacy and applicability of the proposed semi-supervised framework.

We now define some additional notation. For a set S, the space ℓ∞(S) is defined as the set of all

uniform bounded and real functions on S. Let denote convergence in distribution, and
d= denote

equality in distribution. For a probability measure P, the Lr(P) norm for some r > 1 is ‖f ‖P,r =
(P|f |r)1/r, where Pf =

∫

f dP. For a function class F , the bracketing number N[ ]{ǫ,F ,Lr(P)} is the
minimum number of ǫ brackets needed to coverF , as described in van der Vaart (1998). LetPX be the

probability measure of X , and EX be the expectation only with respect to X . Denote by B ◦ fy(X ,Y )

a centred Gaussian process indexed by y with covariance cov[{fs(X ,Y ), ft(X ,Y )}T] for any s, t ∈ R.

2. Bias-amended semi-supervised distribution

2.1. Cross-fitted bias-amended semi-supervised distribution estimators

Recall the proposed estimator in (1). We need to obtain the estimated conditional distribu-

tion function F̃(y | x) based on the labelled data L. While various techniques for estimating the

conditional distribution function could be directly employed, technical challenges in the proposed

estimator (1) arise from the intricate dependence between F̃(y | x) and labelled data (Yi,Xi) ∈ L.

To address this issue, we employ K-fold cross-fitting (Chernozhukov et al., 2018) to obtain the

semi-supervised distribution estimator.

Concretely, we randomly partition data points in the labelled set L = {(Xi,Yi)}ni=1 and unlabelled

set U = {Xi}n+mi=n+1 into K folds, denoted L = L1 ∪ · · · ∪LK and U = U1 ∪ · · · ∪ UK , respectively, where

K > 2 is a fixed integer. The corresponding index sets are denoted I1,…,IK (labelled) andJ1,…,JK

(unlabelled), respectively. Without loss of generality, assume that K divides both n and m. Define

nK = n/K , mK = m/K . For each k ∈ {1,…,K}, letting I−k = {1,…, n} \ Ik and L−k = L \ Lk, we

utilize a conditional cumulative distribution function estimation algorithmA to obtain the estimator

F̂k(· | x) with L−k. Then, we construct the kth fold estimator with all data in Ik ∪ Jk by (1),

F̂k,B(y) = 1

nK +mK

∑

i∈Ik∪Jk

F̂k(y | Xi) + 1

nK

∑

i∈Ik

{1y(Yi) − F̂k(y | Xi)}, y ∈ R.

These K estimators are then aggregated into the cross-fitted estimator

F̂basd(y) = 1

K

K
∑

k=1

F̂k,B(y), y ∈ R.

Estimator F̂basd(y) shares a conceptual similarity with Zhang & Bradic (2022) and Zrnic & Candès

(2024), who focused on obtaining semi-supervised inference for a parameter. However, our aim is to

estimate the entire distribution function rather than a single value. The uniformity introduced by the

function estimation poses a new and challenging aspect, distinguishing our approach.
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2.2. Theoretical analysis

It is important to highlight that the F̂basd(y) remains unbiased, regardless of whether F̂k(y | x) is
misspecified or not well approximated. To develop the uniformity theory for F̂basd(y), we introduce

the following assumptions.

Assumption 1. There exists some nonrandom function F0(y | x) : R × R
p → [0, 1], such that

Uk(x) = supy∈R |F̂k(y | x) − F0(y | x)| satisfies ̺2
n = maxk=1,…,K EX [{Uk(X )}2] = op(1).

Assumption 2. The measurable function classes G = {F0(y | X ) : y ∈ R} and Gk = {F̂k(y | X ) :

y ∈ R} satisfy logN[ ]{ǫ,G,L2(PX )} . ǫ−η and logN[ ]{ǫ,Gk,L2(PX )} . ǫ−η for every ǫ > 0, some

η ∈ (0, 2) and each k ∈ {1,…,K}.

Assumption 1 requires that the conditional cumulative distribution function estimator F̂k(y | x)
converges to F0(y | x) in each fold weakly in the sense that EX {Uk(X )}2 = op(1). This can be guaran-

teed by the strong consistency supy,x |F̂k(y | x) − F0(y | x)| = op(1), which is commonly provided by

the literature (Henzi et al., 2021; Ćevid et al., 2022). Assumption 2 holds if F̂k(y | x) and F0(y | x)
exhibit monotonic behaviour with respect to y for each x, which can usually be guaranteed by the

rearrangement strategy (Chernozhukov et al., 2010), as outlined in the Supplementary Material.

Thus, Assumptions 1–2 are quite mild, providing flexibility in choosing the learning algorithm A.

We also suppose that both labelled and unlabelled samples are independently and identically dis-

tributed. Extending the proposed estimator to other scenarios, such as missing data (Zhang et al.,

2023), remains an important area for future work.

THEOREM 1. Suppose that Assumptions 1–2 hold. Let γn = m(n + m)−1. Then, there exist some

constants C, c > 0 such that, for any 0 < δ 6 2K−1/2n1/2̺(2−η)/4
n ,

pr
[

sup
y∈R

|n1/2{F̂basd(y) − F(y)}| > {σ(G) + ωn̺
(2−η)/4
n }δ

]

6 C exp(−cδ2), (2)

where

σ 2(G) = sup
y∈R

[(1 − γn)var{1y(Y )} + γnvar{1y(Y ) − F0(y | X )}]

and ωn = K1/2γn + {Kγn(1 − γn)}1/2.

Moreover, assuming that γn → γ ∈ [0, 1], we have, as n,m → ∞,

n1/2{F̂basd(y) − F(y)} F(y;G), (3)

uniformly for y ∈ R, where

F(y;G) = (1 − γ )1/2B1 ◦ 1y(Y ) + γ 1/2
B2 ◦ {1y(Y ) − F0(y | X )},

and B1,B2 are two independent Brownian bridges.

Theorem 1 presents
√
n consistency in (2) and the asymptotic Gaussian process limit in (3), similar

to the results of the classical empirical cumulative distribution function F̂ecdf(y) (Dvoretzky et al.,

1956; Donsker, 1952). Parameter γ represents the asymptotic proportion of unlabelled data. Our

results are valid, not only in the classic semi-supervised setting (γ = 1), but also in scenarios where

the labelled and unlabelled data have comparable sizes (γ ∈ (0, 1)). For the special case γ = 0, which

implies that the unlabelled data can be ignored asymptotically,Theorem 1 indicates that the behaviour

of F̂basd(y) is almost the same as that of F̂ecdf(y). Theorem 1 holds provided that the conditional

distribution of Y | X and the corresponding estimator satisfy Assumptions 1–2. Extending this
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result to certain uniform versions over a reasonable class of distributions (e.g., Christgau et al., 2023)

may provide more stable inference, meriting further study.

Remark 1 (Monotonization via rearrangement). The potential nonmonotonicity of the proposed

estimator, caused by the subtraction term in (1), may be visually apparent and affect interpretation.

Again, by applying the rearrangement operation (Chernozhukov et al., 2009), we can easily get the

monotonized distribution estimator without altering any conclusions in Theorem 1.

Remark 2 (Diverging p). Estimator F̂basd(y) remains applicable in the context of diverging p as long

as the chosen conditional distribution estimation method satisfies the weak consistency of Assump-

tion 1. Many machine learning–based conditional distribution estimators (e.g., Ćevid et al., 2022;

Shen & Meinshausen, 2024) can be incorporated into this framework for high-dimensional data,

with numerical studies indicating promising performance. Nevertheless, whether those more sophis-

ticated machine learning–based estimators satisfy Assumption 1 remains an open question for future

research.

Next, we study the efficiency of F̂basd comparedwith F̂ecdf . According to Theorem 1, the asymptotic

covariance of F̂basd corresponds to the covariance of a centred Gaussian process F(y;G), i.e.,

cov

(

F(s;G)

F(t;G)

)

= (1 − γ )cov

(

1s(Y )

1t(Y )

)

+ γ cov

(

1s(Y ) − F0(s | X )

1t(Y ) − F0(t | X )

)

for any s, t ∈ R. Notably, the permit of model misspecification (i.e., F0(y | x) |= F(y | x)) in Assump-

tion 1 does not affect the consistency and weak convergence of F̂basd, since F̂basd is always unbiased by

its construction, but F0(y | x) does affect the asymptotic covariance. Conducting an efficiency com-

parison for a less restrictive function F0(y | x) is challenging, so we consider a specific case where the

learning algorithmA yields F0(y | x) as a conditional distribution function of Y on some projection

of X .

PROPOSITION 1. Suppose that F0(y | X ) = pr{Y 6 y | h(X )} for some function h : Rp 7→ R
q for an

integer q > 0. The asymptotic covariance of F̂basd satisfies

cov

(

F(s;G)

F(t;G)

)

= cov

(

1s(Y )

1t(Y )

)

− γ cov

(

F0(s | X )

F0(t | X )

)

.

Proposition 1 demonstrates that the F̂basd(y) achieves higher efficiency than the empiri-

cal cumulative distribution function, since the asymptotic covariance of F̂ecdf(y) is known as

cov[{1s(Y ),1t(Y )}T]. Numerous examples of algorithm A for such F0(y | x) = pr{Y 6 y | h(x)}
appear in many conditional distribution estimation methods, for example, the linear projection in

Hall & Yao (2005) and generalized single-index models in Henzi et al. (2021). When F0(y | X ) =
pr(Y 6 y | X = x) is the true conditional cumulative distribution function, the covariance of F(·;G)

attains the semiparametric efficiency lower bound.

Remark 3 (Inference for F). Theorem 1 allows us to construct a simultaneous confidence band for

F . The (1 − α)th confidence band can be expressed as [F̂basd(y) − Ln−1/2, F̂basd(y) + Ln−1/2], where
thresholdL is determined such that pr[supy∈R |n1/2{F̂basd(y)−F(y)}| 6 L] ≈ 1−αwith the significance

level α. In practice, the resampling strategy can be employed to approximate L. Specifically, we draw

B realizations F1,…,FB from the Gaussian process F(·;G) in (3) (with estimated covariance matrices

substituted) and compute gb = supy∈R |Fb(y)| (b = 1,…,B). Threshold L is then approximated

by the (1 − α)th sample quantile of {g1,…, gB}. Similarly, one can construct Kolmogorov–Smirnov

goodness-of-fit tests. They are effectively applied in the problem of the local distributional treatment

effect, with improved power over the standard test, as detailed in the Supplementary Material.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/112/1/asae056/7852832 by N
ankai U

niversity user on 21 January 2025

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae056#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asae056#supplementary-data


6 M. Wen et al.

2.3. Parameter inference from the proposed estimator

In this section, we return to parameter inference from functional inference.We consider the param-

eter of interest as a continuous function of F , denoted θ(F), then its semi-supervised estimator can

be directly the plug-in estimator θ(F̂basd). Leveraging the uniform convergence of F̂basd(y) in Theo-

rem 1 and the functional delta theorem (van der Vaart, 1998), it is natural to derive the asymptotic

normality of θ(F̂basd) as follows.

COROLLARY 1. Suppose that θ(F) is the function of interest with a mapping Dθ ⊂ ℓ∞(R) to R,

whereDθ is some subspace determined by θ(·), and θ(F) is Hadamard differentiable at F with derivative

∇θF(·). If Theorem 1 holds then

n1/2{θ(F̂basd) − θ(F)} ∇θF {F(·;G)}.

The proposed plug-in estimator aligns with existing results in the literature, such as those for the

mean and quantiles; see Examples S1–S2 in the Supplementary Material. We provide the algorithm

and computational details of the proposed method in the Supplementary Material, along with a

numerical comparison of semi-supervised mean estimators. The performance of θ(F̂basd) is compar-

able to that of specialized semi-supervisedmean estimators, supporting the corresponding theoretical

justification.

Additionally, it enables inference on more general parameters beyond the scope of the existing

literature.

Example 1 (One-sample U-statistics). Let θ(F) =
∫∫∫

f (y1,…, yr) dF(y1) · · · dF(yr) be the

parameter of interest, where f (y1,…, yr) is the kernel function of degree r. Then,

∇θF{F(·;G)} d= N

(

0, (1 − γ )r2var[EY2,…,Yr{f (Y ,Y2,…,Yr)}]

+ γ r2var

[

EY2,…,Yr{f (Y ,Y2,…,Yr)}

−
∫

EY2,…,Yr{f (y,Y2,…,Yr)} dF0(y | X )

])

.

The first term in the asymptotic variance coincides with that of theU-statistic. For the second part,we

expect that
∫

EY2,…,Yr{f (y,Y2,…,Yr)} dF0(y | X ) is a good approximation of the conditional mean

function E{EY2,…,Yrf (Y ,Y2,…,Yr) | X }. Accordingly, the asymptotic variance of the proposed

plug-in semi-supervised estimator is reduced.

Remark 4. While this article focuses primarily on the distribution estimation and inference for

response Y , our framework can also accommodate the responses that are functions of Y and X ,

such as the loss function of M-estimation (Song et al., 2024) or the score function of Z-estimation

(Angelopoulos et al., 2023), as long as they can be written as a function of some distribution F . For

example, for the squared loss E{(Y − XTβ)2} in population, we can define Z(β) = (Y − XTβ)2 and

use {(Zi(β),Xi)}ni=1 and {Xi}n+mi=n+1 to get a semi-supervised loss.

3. Numerical studies

The data are generated from the model

Yi = µ(Xi) + σ(Xi)εi, i = 1,…, n+ m,

where Xi = (Xi1,…,Xip)
T ∼ Np(0p, Ip) and εi ∼ N (0, 1) are independent. We consider

µ(Xi) = s−1/2
∑s

j=1Xij and σ(Xi) = 1/2, where s = ⌈0.1p⌉ is the number of signals. We set the
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Table 1. Comparison of the proposed F̂basd and the empirical cumulative distribution

function F̂ecdf . The overall mean squared error of the empirical cumulative distribution

function is denoted by mse0. The level of the confidence band is set as α = 0.1.

p = 100 p = 500

mse/mse0 Coverage Length × 102 mse/mse0 Coverage Length × 102

F̃∗
basd 0.50 0.92 5.51 0.46 0.90 5.53

F̂basd-GAMLSS 0.51 0.90 5.57 0.88 0.88 7.04

F̂basd-Engression 0.82 0.88 7.16 0.82 0.88 7.57

F̂basd-DRF 0.90 0.90 7.05 0.99 0.86 7.35

F̂ecdf 1.00 0.90 7.36 1.00 0.87 7.37

F̃∗
basd, F̃basd with known F(y | x); F̂basd-GAMLSS, F̂basd-Engression and F̂basd-DRF represent the F̂basd

estimators with A specified as the boosting method for fitting generalized additive models (Hofner

et al., 2016), the engression estimator (Shen &Meinshausen, 2024) and distributional random forests

(Ćevid et al., 2022), respectively.

p = 100 p = 500

−2 −1 2 −2 −10 1 0 1 2

0.50

0.75

1.00

y

p
M

S
E

 (
y
)

p
M

S
E

0
 (

y
)

Fig. 1. The ratio of pointwisemean squared errors of F̂basd. The pointwisemean squared error of F̂ecdf is denoted

by pmse0(y). The plot includes F̃∗
basd (green solid line), F̂basd-GAMLSS (red dashed line), F̂basd-Engression

(purple long-dash–short-dash line) and F̂basd-DRF (blue dash-dot line). The curve (dark grey long-dash line) is
the theoretical relative semi-parametric efficiency lower bound. See the footnote to Table 1 for an explanation of

the method notation.

number of cross-fitting folds as K = 10 in F̂basd. Three conditional distribution estimation algo-

rithms A are considered: the boosting method for fitting generalized additive models (Hofner et al.,

2016), distributional random forests (Ćevid et al., 2022) and the neural network–based engression

method (Shen &Meinshausen, 2024).We also provide the results of the proposed estimator with the

true conditional distribution F(y | x). Two metrics are considered for evaluating the distribution esti-

mation: the pointwise mean squared error pmse(y) = E{F̂(y) − F(y)}2 and the overall mean squared

error mse =
∫

pmse(y) dy. The average coverage and length of the confidence band are considered

for distribution inference.

The results for n = 1000 and m = 10 000 with different p are reported in Table 1 and Fig. 1. A

ratio of mean squared errors less than one means that the proposed F̂basd is more efficient than F̂ecdf .

The results show that the proposed F̂basd is usually at least as efficient as F̂ecdf , and the improvement

is significant especially when the conditional distribution can be well approximated.

Additional simulations can be found in the Supplementary Material, including the nonlinear

model, conformal p-values and two-sample Kolmogorov–Smirnov tests.
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